The Effectiveness of Biochar and Compost-Based Fertilizers in Restoring Soil Fertility and Red Chili Yields

Yohanes Parlindungan Situmeang, Made Suarta, I Dewa Nyoman Sudita, Ni Luh Putu Sulis Dewi Damayanti

Abstract


The livestock areas are characterized by vast quantities of animal wastes that can be used as organic manure through composting and biochar production for soil fertility enhancement. This work aims to estimate the potential of increasing soil fertility and red chili production by employing biochar and poschar from different animal wastes. The design used for this study is a factorial pattern and randomized block. The first factor is the type of biochar used, including no biochar, biochar derived from cow manure, biochar derived from goat manure, and biochar derived from chicken manure. The second factor is the type of poschar; this includes poschar derived from cow manure, poschar derived from goat, poschar derived from chicken manure. It can be concluded from the investigation outcomes that applying biochar and poschar substantially affects soil factors such as water content, pH, EC, humic acid, fulvic acid, C, N, P, K, and CEC values. Red chilies increase and yield higher per hectare when various forms of biochar and poschar are applied. The combustion of cow manure and application of biochar products and biochar made from chicken manure produce the highest agronomic performance.

Keywords


Agronomic effectiveness; Biochar; Compost; Livestock waste; Organic fertilizer

Full Text:

PDF

References


Adediran, J. A., Taiwo, L. B., Akande, M. O., Sobulo, R. A., & Idowu, O. J. (2005). Application of Organic and Inorganic Fertilizer for Sustainable Maize and Cowpea Yields in Nigeria. Journal of Plant Nutrition, 27(7), 1163–1181. https://doi.org/10.1081/PLN-120038542

Adekiya, A. O., Olayanju, T. M. A., Ejue, S. W., Alori, E. T., & Adegbite, K. A. (2020). Contribution of Biochar in Improving Soil Health. In B. Giri & A. Varma (Eds.), Soil Health (Vol. 59, pp. 99–113). Springer International Publishing. https://doi.org/10.1007/978-3-030-44364-1_6

Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost, and biochar-compost for soil quality, maize yield, and greenhouse gas emissions in tropical agricultural soil. Science of the Total Environment, 543, 295–306. https://doi.org/10.1016/j.scitotenv.2015.11.054

Amaral, H. D. D. R., Situmeang, Y. P., & Suarta, M. (2019). The effects of compost and biochar on the growth and yield of red chili plants. Journal of Physics: Conference Series, 1402(3), 033057. https://doi.org/10.1088/1742-6596/1402/3/033057

Amoah-Antwi, C., Kwiatkowska-Malina, J., Thornton, S. F., Fenton, O., Malina, G., & Szara, E. (2020). Restoration of soil quality using biochar and brown coal waste: A review. Science of the Total Environment, 722, 137852. https://doi.org/10.1016/j.scitotenv.2020.137852

Bamminger, C., Poll, C., Sixt, C., Högy, P., Wüst, D., Kandeler, E., & Marhan, S. (2016). Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agriculture, Ecosystems & Environment, 233, 308–317. https://doi.org/10.1016/j.agee.2016.09.016

Bassouny, M., & Abbas, M. (2019). Role of biochar in managing the irrigation water requirements of maize plants: The pyramid model signifying the soil hydro-physical and environmental markers. Egyptian Journal of Soil Science, 59(2-Serial Number 2), 99-115. https://doi.org/10.21608/ejss.2019.9990.1252

Bolan, N., Hoang, S. A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., Joseph, S., Jung, S., Kim, K. H., Kirkham, M. B., Kua, H. W., Kumar, M., Kwon, E. E., Ok, Y. S., Perera, V., Rinklebe, J., Shaheen, S. M., Sarkar, B., Sarmah, A. K., … Van Zwieten, L. (2022). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 67(2), 150–200. https://doi.org/10.1080/09506608.2021.1922047

Calamai, A., Chiaramonti, D., Casini, D., Masoni, A., & Palchetti, E. (2020). Short-term effects of organic amendments on soil properties and maize (Zea maize L.) growth. Agriculture, 10(5), 158. https://doi.org/10.3390/agriculture10050158

Chen, Z., Xu, Y., Cusack, D. F., Castellano, M. J., & Ding, W. (2019). Molecular insights into the inhibitory effect of nitrogen fertilization on manure decomposition. Geoderma, 353, 104–115. https://doi.org/10.1016/j.geoderma.2019.06.034

Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G. D., Rutherford, D. W., Sparrevik, M., Hale, S. E., Obia, A., & Mulder, J. (2013). Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy, 3(2), 256–274. https://doi.org/10.3390/agronomy3020256

Eusufzai, M. K., & Fujii, K. (2012). Effect of Organic Matter Amendment on Hydraulic and Pore Characteristics of a Clay Loam Soil. Open Journal of Soil Science, 02(04), 372–381. https://doi.org/10.4236/ojss.2012.24044

Frimpong, K. A., Abban-Baidoo, E., & Marschner, B. (2021). Can combined compost and biochar application improve the quality of highly weathered coastal savanna soil? Heliyon, 7(5), e07089. https://doi.org/10.1016/j.heliyon.2021.e07089

Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061–2069. https://doi.org/10.13031/2013.25409

Głąb, T., Palmowska, J., Zaleski, T., & Gondek, K. (2016). Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11–20. https://doi.org/10.1016/j.geoderma.2016.06.028

Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment, 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015

Haider, F. U., Coulter, J. A., Cai, L., Hussain, S., Cheema, S. A., Wu, J., & Zhang, R. (2022). An overview of biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere, 32(1), 107–130. https://doi.org/10.1016/S1002-0160(20)60094-7

Hammerschmiedt, T., Holatko, J., Kucerik, J., Mustafa, A., Radziemska, M., Kintl, A., Malicek, O., Baltazar, T., Latal, O., & Brtnicky, M. (2022). Manure Maturation with Biochar: Effects on Plant Biomass, Manure Quality and Soil Microbiological Characteristics. Agriculture, 12(3), 314. https://doi.org/10.3390/agriculture12030314

Hanpattanakit, P., Vanitchung, S., Saeng-Ngam, S., & Pearaksa, P. (2021). Effect of biochar on red chili growth and production in heavy acid soil. Chemical Engineering Transactions, 83, 283–288. https://doi.org/10.3303/CET2183048

Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379–420. https://doi.org/10.1007/s42773-020-00065-z

Hui, D. (2021). Effects of Biochar Application on Soil Properties, Plant Biomass Production, and Soil Greenhouse Gas Emissions: A Mini-Review. Agricultural Sciences, 12(03), 213–236. https://doi.org/10.4236/as.2021.123014

Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., Ammara, U., Ok, Y. S., & Siddique, K. H. M. (2017). Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments, 17(3), 685–716. https://doi.org/10.1007/s11368-016-1360-2

Jabborova, D., Wirth, S., Kannepalli, A., Narimanov, A., Desouky, S., Davranov, K., Sayyed, R. Z., El Enshasy, H., Malek, R. A., Syed, A., & Bahkali, A. H. (2020). Co-inoculation of rhizobacteria and biochar application improves growth and nutrients in soybeans and enriches soil nutrients and enzymes. Agronomy, 10(8), 1142. https://doi.org/10.3390/agronomy10081142

Jackson, W. R. (1993). Humic, fulvic and microbial balance: organic soil conditioning (p. 329). Evergreen: Jackson Research Center.

Japakumar, J., Abdullah, R., & Mohd Rosli, N. S. (2021). Effects of biochar and compost applications on soil properties and growth performance of Amaranthus sp. grown at the urban community garden. AGRIVITA Journal of Agricultural Science, 43(3), 441–453. https://doi.org/10.17503/agrivita.v43i3.2751

Karthik, A., Hassan Hussainy, S. A., & Rajasekar, M. (2020). Comprehensive Study on Biochar and its Effect on Soil Properties: A Review. International Journal of Current Microbiology and Applied Sciences, 9(5), 459–477. https://doi.org/10.20546/ijcmas.2020.905.052

Kätterer, T., Roobroeck, D., Andrén, O., Kimutai, G., Karltun, E., Kirchmann, H., Nyberg, G., Vanlauwe, B., & Röing de Nowina, K. (2019). Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Research, 235, 18–26. https://doi.org/10.1016/j.fcr.2019.02.015

Khatoon, H., Solanki, P., Narayan, M., Tewari, L., & Rai, J.P.N. (2017). Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. International Journal of Chemical Studies, 5(6), 1648–1656. https://www.chemijournal.com/archives/?year=2017&vol=5&issue=6&ArticleId=1509&si=false

Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, 41(4), 990–1000. https://doi.org/10.2134/jeq2011.0070

Kuzyakov, Y., Bogomolova, I., & Glaser, B. (2014). Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology and Biochemistry, 70, 229–236. https://doi.org/10.1016/j.soilbio.2013.12.021

Ma, N., Zhang, L., Zhang, Y., Yang, L., Yu, C., Yin, G., Doane, T. A., Wu, Z., Zhu, P., & Ma, X. (2016). Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application. PLOS ONE, 11(5), e0154091. https://doi.org/10.1371/journal.pone.0154091

Nurhidayati, & Mariati. (2014). Utilization of maize cob biochar and rice husk charcoal as soil amendment for improving acid soil fertility and productivity. Journal of Degraded and Mining Lands Management, 2(1), 223–230. https://doi.org/10.15243/jdmlm.2014.021.223

Pettit, R. E. (2014). Organic matter, humus, humate, humic acid, fulvic acid, and humin: Their importance in soil fertility and plant health. Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS) 2014, 1–5.

Rogovska, N., Laird, D. A., Rathke, S. J., & Karlen, D. L. (2014). Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma, 230–231, 340–347. https://doi.org/10.1016/j.geoderma.2014.04.009

Sadegh-Zadeh, F., Tolekolai, S. F., Bahmanyar, M. A., & Emadi, M. (2018). Application of Biochar and Compost for Enhancement of Rice (Oryza sativa L.) Grain Yield in Calcareous Sandy Soil. Communications in Soil Science and Plant Analysis, 49(5), 552–566. https://doi.org/10.1080/00103624.2018.1431272

Schulz, H., Dunst, G., & Glaser, B. (2013). Positive effects of composted biochar on plant growth and soil fertility. Agronomy for Sustainable Development, 33(4), 817–827. https://doi.org/10.1007/s13593-013-0150-0

Sharma, P., Abrol, V., Sharma, V., Chaddha, S., Srinivasa Rao, C., Ganie, A. Q., Ingo Hefft, D., El-Sheikh, M. A., & Mansoor, S. (2021). Effectiveness of biochar and compost on improving soil hydro-physical properties, crop yield, and monetary returns in inceptisol subtropics. Saudi Journal of Biological Sciences, 28(12), 7539–7549. https://doi.org/10.1016/j.sjbs.2021.09.043

Situmeang, Y. P., Adnyana, I. M., Subadiyasa, I. N. N., & Merit, I. N. (2018). Effectiveness of Bamboo Biochar combined with compost and NPK fertilizer to improve soil quality and corn yield. International Journal on Advanced Science, Engineering and Information Technology, 8(5), 2241–2248. https://doi.org/10.18517/ijaseit.8.5.2179

Situmeang, Y. P., Sudita, I. D. N., & Suarta, M. (2019). Manure utilization from cows, goats, and chickens as compost, biochar, and poschar in increasing the red chili yield. International Journal on Advanced Science, Engineering and Information Technology, 9(6), 2088–2095. https://doi.org/10.18517/ijaseit.9.6.10345

Situmeang, Y. P., Sudita, I. D. N., & Suarta, M. (2021). Application of Compost and Biochar from Cow, Goat, and Chicken Manure to Restore Soil Fertility and Yield of Red Chili. International Journal on Advanced Science, Engineering and Information Technology, 11(5), 2008-2015. http://ijaseit.insightsociety.org/index.php/ijaseit/article/view/13845

Skodras, G., Grammelis, P., Basinas, P., Kakaras, E., & Sakellaropoulos, G. (2006). Pyrolysis and combustion characteristics of biomass and waste-derived feedstock. Industrial & Engineering Chemistry Research, 45(11), 3791–3799. https://pubs.acs.org/doi/10.1021/ie060107g

Sun, F., & Lu, S. (2014). Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. Journal of Plant Nutrition and Soil Science, 177(1), 26–33. https://doi.org/10.1002/jpln.201200639

Toková, L., Igaz, D., Horák, J., & Aydin, E. (2020). Effect of biochar application and re‐application on soil bulk density, porosity, saturated hydraulic conductivity, water content, and soil water availability in a silty loam haplic luvisol. Agronomy, 10(7), 1005. https://doi.org/10.3390/agronomy10071005

Usman, A. R. A., Al-Wabel, M. I., Ok, Y. S., Al-Harbi, A., Wahb-Allah, M., El-Naggar, A. H., Ahmad, M., Al-Faraj, A., & Al-Omran, A. (2016). Conocarpus Biochar Induces Changes in Soil Nutrient Availability and Tomato Growth Under Saline Irrigation. Pedosphere, 26(1), 27–38. https://doi.org/10.1016/S1002-0160(15)60019-4

Vandecasteele, B., Reubens, B., Willekens, K., & De Neve, S. (2014). Composting for increasing the fertilizer value of chicken manure: Effects of feedstock on P availability. Waste and Biomass Valorization, 5(3), 491–503. https://doi.org/10.1007/s12649-013-9264-5

Varela Milla, O. V, Rivera, E. B., Huang, W. J., Chien, C. C., & Wang, Y. M. (2013). Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. Journal of Soil Science and Plant Nutrition, 13(2), 251–266. https://doi.org/10.4067/S0718-95162013005000022

Yaseen, S., Amjad, S. F., Mansoora, N., Kausar, S., Shahid, H., Alamri, S. A. M., Alrumman, S. A., Eid, E. M., Ansari, M. J., Danish, S., & Datta, R. (2021). Supplemental effects of biochar and foliar application of ascorbic acid on physio-biochemical attributes of barley (Hordeum vulgare L.) under cadmium-contaminated soil. Sustainability, 13(16), 9128. https://doi.org/10.3390/su13169128

Yustisia, Riyanto, D., Thamrin, T., & Amirrullah, J. (2021). Implementation of Rice and Maize Cultivation Technology Based on Agronomic Effectiveness. E3S Web of Conferences, 232, 03025. https://doi.org/10.1051/e3sconf/202123203025

Zhang, M., Liu, Y., Wei, Q., Liu, L., Gu, X., & Gou, J. (2022). Biochar-Based Fertilizer Enhances the Production Capacity and Economic Benefit of Open-Field Eggplant in the Karst Region of Southwest China. Agriculture, 12(9), 1388. https://doi.org/10.3390/agriculture12091388

Zhao, H., Xie, T., Xiao, H., & Gao, M. (2022). Biochar-Based Fertilizer Improved Crop Yields and N Utilization Efficiency in a Maize–Chinese Cabbage Rotation System. Agriculture, 12(7), 1030. https://doi.org/10.3390/agriculture12071030




DOI: http://doi.org/10.17503/agrivita.v46i2.4040

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.