UTILIZATION OF cpDNA SEQUENCES TO IDENTIFY 15 MANGO ACCESSIONS

Sukartini Sukartini, Taryono Taryono, Panjisakti Basunanda, Rudi Hari Murti

Abstract


Information about genetic relationship and genetic diversity are an inevitable need in mango breeding program. Base substitution value, genetic distance and grouping of 15 mango accessions based on accessions in chloroplast DNA (cpDNA) among 15 mango accessions were assessed. The samples were originated from Mango Germplasm, Cukur Gondang Research Station of Indonesian Tropical Fruits Research Institute, Pasuruan, East Java. Sequencing of Chloroplast DNA was used to obtain nucleotide sequence data. Paired specific primer rpl20 F - rps12 R and atp F - rbcL R were used for amplification of non-coding area of mango DNA chloroplast and sequencing processes as well. All data were analyzed using Software MEGA 6. The result showed that total numbers and nucleotide base sequences varied among all accessions. All accessions were grouped in five different clusters that might be used as source of parental breeding.

Keywords


cpDNA; genetic relationships; mango; sequencing; variability

Full Text:

PDF

References


Brown, J.K. 1994. Bootstrap hypothesis tests for evolutionary trees and other dendrograms. Proceedings of the National Academy of Sciences. USA. 91 (25): 12293-12297.

Doyle, J.J. and J.L. Doyle. 1990. A rapid total DNA preparation procedure for fresh plant tissue. Focus 12: 13-15.

Felsenstein, J. 1985. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 39 (4): 783-791.

FAOSTAT. 2012. Top Production Mangoes, mangosteen, guavas 2012. Food and Agriculture Organization of the United Nation. Statistic Division. faostat.fao.orf/ site/339/default.aspx. Accessed on August 20, 2015.

Gvozdenovic, S., S. Bado, R. Afza, S. Jocic and C. Mba. 2009. Intervarietal differences in response of sunflower (Helianthus annuus L.) to different mutagenic treatments. In: Induced plant mutations in the genomics era. Q.Y. Shu (ed.). Proceedings of an International Joint FAO/IAEA Symposium. Vienna. pp. 358-360.

Hamilton, M.B. 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology 8 (3): 521-523.

Hoshino, A.A., J.P. Bravo, P.M. Nobile and K.A. Morelli. 2012. Microsatellites as tools for genetic diversity analysis. In: Genetic Diversity in Microorganisms. M. Caliskan (ed.). pp. 149-170.

Intrieri, M.C., R. Muleo and M. Buiatti. 2007. Chloroplast DNA polymorphisms as molecular markers to identify cultivars of Olea europaea L. The Journal of Horticultural Science and Biotechnology 82 (1): 109-113. crossref

Khan, I.A. and M.K. Azim. 2011. Variations in intergenic spacer rpl20-rps12 of mango (Mangifera indica) chloroplast DNA: implications for cultivar identification and phylogenetic analysis. Plant Systematics and Evolution 292 (3): 249-255. crossref

Lavi, U., E. Tomer, S. Gazit and J. Hillel. 1998. Components of the genetic variance and genetic correlations between traits in Mango. Scientia Horticulturae 75 (1-2): 11-25. crossref

Lavi U., K. Kashkush, D. Sa’ada, H. Shats, U. Ravid and E. Tomer. 2004. Mango breeding and the potential of modern biology. ISHS Acta Horticulturae 645: VII International Mango Symposium. pp. 51-59. crossref

Lavi, U., S. Gurevitz, G.B. Ari, D. Saada, K. Kashkush, T. Paz, T. Twito, Y. Cohen, J. Hillel and G. Simchen. 2006. Potential applications of modern biological techniques in breeding fruit trees. Journal of Fruit and Ornamental Plant Research 14 (1): 13-19.

Lodhi, M.A., G.N. Ye, N.F. Weeden and B.I. Reisch. 1994. A simple and efficient method for DNA extraction from grapevine cultivars, Vitis species and Ampelopsis. Plant Molecular Biology Reporter 12 (1): 6-13.

Mukherjee, S.K. and R.E. Litz. 2009. 1. Introduction: Botany and importance. In: The mango, 2nd edition: Botany, production and uses. R.E. Litz (ed.). Oxfordshire: CAB Inter-national. pp. 1-18.

Saave, N. 2011. Export factsheet ecowas: mangoes. Report. O. Marty, K. Conte and C. Vonnahme (eds.). Swiss: International Trade Center. p. 34.

Samuel, R., W. Pinsker and M. Kiehn. 1997. Phylogeny of some species of Crytandra (Gesneriaceae) inferred from the atpB- rbcL cpDNA intergene region. Botanica Acta 110: 503-510.

Semagn, K., A. Bjornstad and M.N. Ndjiondjop. 2006. An overview of molecular marker methods for plants. African Journal of Biotechnology 5 (25): 2540-2568.

Sauco, V.G. 2004. Mango production and world market: current situation and future prospects. ISHS Acta Horticulturae 645: VII International Mango Symposium. 645: 107-116. crossref

Tateno, Y., N. Takezaki and M. Nei. 1994. Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site. Molecular Biology and Evolution 11 (2): 261-277.

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30 (12): 2725-2729. crossref

Usman, M., B. Fatima and M.J. Jaskani. 2001. Breeding in mango. International Journal of Agriculture & Biology 3 (4): 522-526.

Yang, Z. 1996. Phylogenetic analysis using parsimony and likelihood methods. Journal of Molecular Evolution 42 (2): 294-307.




DOI: http://doi.org/10.17503/agrivita.v38i2.767

Copyright (c) 2016 AGRIVITA Journal of Agricultural Science

License URL: http://creativecommons.org/licenses/by-nc/4.0/