Growth, Physiology, and Water Status of Sissoo Spinach (Alternanthera sissoo) Under Different Irrigation Regimes

‘Alyaa’ Najihah Mat Hasan, Tuan Syaripah Najihah, Nornasuha Yusoff

Abstract


The rising popularity of the Sissoo spinach is growing in the vegetable industry along with the increase in its demand. However, water stress conditions may affect the plants' growth, physiology, and water status. Hence, the research study aims to evaluate Sissoo spinach's growth, physiological parameters, and water status once subjected to water deficit. Besides, it also focuses on determining the optimum water requirement for Sissoo spinach. There were four different water treatments consisting of 100% (well-watered), 75% (moderate water deficit), 50% (high water deficit), and 25% (severe water deficit) water treatments arranged in Randomized Complete Block Design (RCBD) with five replications in the greenhouse. The research findings show that the results are statistically significant for most parameters: plant height, number of leaves, chlorophyll content, stomatal conductances, plant water status, and chlorophyll fluorescence. Contrarily, the stem diameter, fresh weight, dry weight, and leaf area data do not show any significant differences. As it comes to the point of research findings, the optimum water requirement for Sissoo spinach was 50% water treatment. This is crucial to prevent unnecessary, avoidable water application onto plants.

Keywords


Alternanthera sissoo; Sissoo spinach; Water stress

Full Text:

PDF

References


Alam, M.A., Rahmat, N.A., Mijin, S., Rahman, M.S., & Hasan, M.M. (2022). Influence of Palm Oil Mill Effluent (POME) on growth and yield performance of Brazilian spinach (Alternanthera sissoo). Journal of Agrobiotechnology, 13(1), 40-49. DOI

Blokhina, O., Virolainen, E., & Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91(2), 179–194. DOI

Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. DOI

Ekinci, M., Ors, S., Sahin, U., Yildirim, E., & Dursun, A. (2015). Responses to the Irrigation Water Amount of Spinach Supplemented with Organic Amendment in Greenhouse Conditions. Communications in Soil Science and Plant Analysis, 46(3), 327–342. DOI

Ellya, H., Nurlaila, Sari, N. N., Apriani, R. R., Mulyawan, R., & Ismuhajaroh, B. N. (2021). Leaf Morphology of Brazilian Spinach (Alternanthera sissoo) as a Backyard Vegetable. International Journal of Agricultural Sciences, 5(2), 56-59. website

Fazilah, F. F. W., Saroni, N. S., & Norasma, C. Y. N. (2019). Production of spinach under variable water supply. Konvensyen Kebangsaan Kejuruteraan Pertanian Dan Makanan 2019. Putrajaya, Malaysia. website

Ghanbari, A.A., Shakiba, M.R., Toorchi, M., & Choukan, R. (2013). Morpho-physiological responses of common bean leaf to water deficit stress. European Journal of Experimental Biology, 3(1), 460–466. website

Imadi, S. R., Gul, A., Dikilitas, M., Karakas, S., Sharma, I., & Ahmad, P. (2016). Water stress: Types, causes, and impact on plant growth and development. In P. Ahmad (Ed.), Water Stress and Crop Plants (1st ed., pp. 343–355). Wiley. DOI

Institute for Public Health (2020). National Health and Morbidity Survey (NHMS) 2019: Non-communicable diseases, healthcare demand, and health literacy—Key Findings. Perpustakaan Negara Malaysia.

Iseki, K., & Olaleye, O. (2020). A new indicator of leaf stomatal conductance based on thermal imaging for field grown cowpea. Plant Production Science, 23(1), 136–147. DOI

Javed, Q., Sun, J., Azeem, A., Ullah, I., Huang, P., Kama, R., Jabran, K., & Du, D. (2019). The enhanced tolerance of invasive Alternanthera philoxeroides over native species under salt-stress in China. Applied Ecology and Environmental Research, 17(6), 14767–14785. DOI

Maseko, I., Ncube, B., Mabhaudhi, T., Tesfay, S., Chimonyo, V.G.P., Araya, H.T., Fessehazion, M., & Du Plooy, C.P. (2019). Moisture stress on physiology and yield of some indigenous leafy vegetables under field conditions. South African Journal of Botany, 126, 85–91. DOI

Medyouni, I., Zouaoui, R., Rubio, E., Serino, S., Ahmed, H. B., & Bertin, N. (2021). Effects of water deficit on leaves and fruit quality during the development period in tomato plant. Food Science & Nutrition, 9(4), 1949–1960. DOI

Mosenda, E., Chemining'wa, G., Ambuko, J., & Owino, W. (2020). Effect of Water Stress on Growth and Yield Components of Selected Spider Plant Accessions. Journal of Medicinally Active Plants, 9(2), 81-97. DOI

Najihah, T.S., Ibrahim, M.H., Razak, A.A., Nulit, R., & Wahab, P.E.M. (2019). Effects of water stress on the growth, physiology and biochemical properties of oil palm seedlings. AIMS Agriculture and Food, 4(4), 854–868. DOI

Najihah, T.S., Ibrahim, M.H., Zain, N.A.M., Nulit, R., Wahab, P.E.M. (2020). Activity of the oil palm seedlings exposed to a different rate of potassium fertilizer under water stress condition. AIMS Environmental Science, 7(1), 46–68. DOI

Nasarullah, N. N., Ahmed, W. N. W., & Othman, H. (2022). Determining Water Stress and Varying Irrigation Regimes on Spinach (Spinacea oleracea L.) Growth Performance. IOP Conference Series: Earth and Environmental Science, 1059(1). DOI

Pereira, C., Dias, M. I., Petropoulos, S. A., Plexida, S., Chrysargyris, A., Tzortzakis, N., Calhelha, R. C., Ivanov, M., Stojković, D., Soković, M., Barros, L., & Ferreira, I.C.F.R. (2019). The Effects of Biostimulants, Biofertilizers and Water-Stress on Nutritional Value and Chemical Composition of Two Spinach Genotypes (Spinacia oleracea L.). Molecules, 24(24), 4494. DOI

Rashid, M., Hussain, K., Malik, A. A., Narayan, S., Nazir, G., Hussain, S. M., Maqbool, S., Farwah, S., Hussain, T., & Ayoub, I. (2020). Impact of Climate Change on Vegetable Crops and its Mitigation. International Journal of Current Microbiology and Applied Sciences, Special Issue-11: 2429-2445. PDF

Reyes, A., Alvarado, O., & Álvarez-Herrera, J. (2018). Effect of irrigation suspension on the growth, water state and production of spinach (Spinacia olerácea L.) plants. Agronomía Colombiana, 36(2), 120–125. DOI

Scheelbeek, P.F.D., Bird, F.A., Tuomisto, H.L., Green, R., Harris, F.B., Joy, E.J.M., Chalabi, Z., Allen, E., Haines, A., & Dangour, A.D. (2018). Effect of environmental changes on vegetable and legume yields and nutritional quality. Proceedings of the National Academy of Sciences of the United States of America, 115(26), 6804–6809. DOI

Seymen, M. (2021). Comparative analysis of the relationship between morphological, physiological, and biochemical properties in spinach (Spinacea oleracea L.) under deficit irrigation conditions. Turkish Journal of Agriculture and Forestry, 45(1), 55-67. DOI

Sun, Z., Sun, H., Li, M., Chen, L., Liu, H., & Wu, Y. (2018). Nutrient content monitoring of potato plant based on spectrum device. IFAC PapersOnline, 51(17), 871–875. DOI

Teatrawan, I.A., Madyaningrana, K., Ariestanti, C.A., & Prihatmo, G. (2022). Pemanfaatan Limbah Ampas Coffea canephora sebagai Pupuk Pendukung Pertumbuhan Altenanthera sissoo. Bioma : Jurnal Biologi Dan Pembelajaran Biologi, 7(1), 90–104. DOI

Vlaovic, J., Balen, J., Grgic, K., Zagar, D., Galic, V., & Simic, D. (2020). An Overview of Chlorophyll Fluorescence Measurement Process, Meters and Methods. 2020 International Conference on Smart Systems and Technologies (SST), 245–250. DOI




DOI: http://doi.org/10.17503/agrivita.v45i3.4220

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.