Genetic Diversity and Phylogenetic Relationships of Mountain Papaya (Vasconcellea pubescens) in Dieng Plateau Based on Internal Transcribed Spacer Sequence

Muhammad Said Rifqi, Abdul Razaq Chasani

Abstract


The Dieng Plateau is an area used to cultivate Mountain Papaya (Vasconcellea pubescens A.DC.) as a food commodity in Indonesia. Research on diversity and relationships is vital as a first step in Mountain Papaya conservation in the Dieng Plateau. The study aims to determine the genetic diversity and relationship between Mountain Papaya accessions using Internal Transcribed Spacer (ITS) rDNA sequences. Fourteen accessions of Mountain Papaya with different sex distributions and altitudes are amplified using ITS1 and ITS4 primers. The genetic diversity is analyzed using the DnaSP 5.10.1 program. The Maximum Likelihood (ML) approach in MEGA 11 is utilized for assessing phylogenetic tree data based on ITS-rDNA regional sequences. With high haplotype diversity (Hd) values of 1.000 ± 0.027 and high nucleotide diversity (π) values of 0.09674 ± 0.00978, Mountain Papaya exhibits a high level of genetic diversity. Three main clades were identified in the phylogram tree based on the 14 ITS-rDNA sequences of Mountain Papaya. The results of this diversity data can support breeding programs intended to boost Mountain Papaya variety production.

Keywords


DNA marker; Highlands; Molecular systematics; Mountain Pawpaw

Full Text:

PDF

References


Álvarez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29(3), 417–434. DOI

Antunes Carvalho, F., & Renner, S. S. (2012). A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Molecular Phylogenetics and Evolution, 65(1), 46–53. DOI

Aprilyanto, V., & Sembiring, L. (2016). Filogenetika Molekuler, Teori dan Aplikasi. Yogyakarta, Indonesia: Innosain.

Brinegar, C. (2009). Assesing evolution and biodiversity in plants at the Molecular level. Kathmandu University Journal of Science, Engineering and Technology, 5(2), 149-159.

Carrasco, B., Avila, P., Perez-Diaz, J., Muñoz, P., García, R., Lavandero, B., Zurita-Silva, A., Retamales, J. B., & Caligari, P. D. S. (2009). Genetic structure of highland papayas (Vasconcellea pubescens (Lenné et C. Koch) Badillo) cultivated along a geographic gradient in Chile as revealed by Inter Simple Sequence Repeats (ISSR). Genetic Resources and Crop Evolution, 56(3), 331–337. DOI

Castillo, A. I., & Almeida, R. P.P. (2021). Evidence of gene nucleotide composition favoring replication and growth in a fastidious plant pathogen. G3 Genes|Genomes|Genetics, 11(6), jkab076. DOI

Cho, A. (2012). Constructing Phylogenetic Trees Using Maximum Likelihood. Scripps Senior Theses, 46. website

Conlon, B. H., Schmidt, S., Poulsen, M., & Shik, J. S. (2022). Orthogonal protocols for DNA extraction from filamentous fungi. STAR Protocols, 3(1), 101126. DOI

Convention on Biological Diversity (2012). Global Strategy for Plant Conservation: 2011-2020. Richmond, UK: Botanic Gardens Conservation International.

Eriksson, G., & Ekberg, I. (2001). An Introduction to Forest Genetic. Uppsala: Swedish University of Agricultural Sciences.

Hamrick, J. L., & Godt, M. J. W. (1996). Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society B: Biological Sciences, 351(1345), 1291-1298. DOI

Hobbs, J-P. A., Van Herwerden, L., Jerry, D. R., Jones, G. P., & Munday, P. L. (2013). High genetic diversity in geographically remote populations of endemic and widespread coral reef angelfishes (genus: Centropyge). Diversity, 5(1), 39-50. DOI

Huelsenbeck, J. P., Bollback, J. P., & Levine, A. M. (2002). Inferring the Root of a Phylogenetic Tree. Systematic Biology, 51(1), 32-43. DOI

Kyndt, T., Van Droogenbroeck, B., Romeijin-Peters, E., Romero-Motochi, J.P., Scheldeman, X., Goetghebeur, P., Damme, P. V., & Gheysen, G. (2005). Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacers and chloroplast sequence data. Molecular Phylogenetics and Evolution, 37(2), 442-459. DOI

Laily, A. N., Suranto, S., & Sugiyarto, S. (2012). Characterization of Carica pubescens in Dieng Plateau, Central Java based on morphological characters, antioxidant capacity, and protein banding pattern. Nusantara Bioscience, 4(1), 16-21. DOI

Laily, A., Purnomo, P., Daryono, B., & Purwantoro, A. (2021). Local Knowledge: Sex Determination on Vasconcellea pubescens A.DC in Java, Indonesia. In S. Menggo, Y. S. Lon, F. Widyawati, Ans. P. Yuliantari, & R. Rahim, Proceedings of the 1st International Conference on Education, Humanities, Health, and Agriculture (pp. 770-775). Ruteng, Flores, Indonesia: EAI. DOI

Librado, P., & Rozas, J. (2009). DnaSP v5: A Software for Comprehensive Analysis of DNA Polymorphism Data. Bioinformatics, 25(11), 1451-1452. DOI

Luo, G.-H., Li, X.-H., Han, Z.-J., Zhang, Z.-C., Yang, Q., Guo, H.-F., & Fang, J.-C. (2016). Transition and transversion mutations are biased towards GC in transposons of Chilo suppressalis (Lepidoptera: Pyralidae). Genes, 7 (10), 72. DOI

Lynch, M. (2007). The Origin of Genome Architecture. Sunderland, MA: Sinauer.

Maddison, W.P., & Maddison, D.R. (2019). Mesquite: a modular system for evolutionary analysis. Version 3.61. website

National Research Council. (1989). Lost crops of the Incas : little-known plants of the Andes with promise for worldwide cultivation. Washington, DC: The National Academies Press.

Nei, M., & Kumar, S. (2000). Molecular Evolution and Phylogenetics. New York: Oxford University Press.

Nonić, M., & Šijačić-Nikolić, M. (2019). Genetic Diversity: Sources, Threats, and Conservation. In W. Leal Filho, A. M. Azul, L. Brandli, P. G. Özuyar, & T. Wall (Eds.), Life on Land (pp. 1–15). Springer International Publishing. DOI

Novalina, D. (2013). Aktivitas Antibakteri Ekstrak Daun Carica pubescens dari Dataran Tinggi Dieng terhadap Bakteri Penyebab Penyakit Diare. El-Vivo, 1(1), 1-12.

Pandin, D. S. (2010). Penanda DNA Untuk Pemuliaan Tanaman Kelapa (Cocos nucifera L.). Perspektif, 9(1) 21-35. PDF

Priyanka, V., Kumar, R., Dhaliwal, I., & Kaushik, P. (2021). Germplasm Conservation: Instrumental in Agricultural Biodiversity - A Review. Sustainability, 13(12), 6743. DOI

Qin, Y., Li, M., Cao, Y., Gao, Y., & Zhang, W. (2017). Molecular thresholds of ITS2 and their implications for molecular evolution and species identification in seed plants. Scientific Reports, 7(1), 17316. DOI

Quazi, S., Golani, T., & Martino Capuzzo, A. (2021). Germplasm Conservation. In S. Kumar (Ed.), Endangered Plants. IntechOpen. DOI

Rifqi, M. S., & Chasani, A. R. (2023). Keragaman dan Hubungan Kekerabatan Pepaya Gunung (Vasconcellea pubescens, A.DC.) di Dataran Tinggi Dieng berdasarkan Penanda Morfologis dan Sekuen Internal Transcribed Spacer [Master’s thesis, Universitas Gadjah Mada] ETD UGM: Theses and Dissertations Repository. website

Rugayah, Retnowati, A., Windadri, F. I., & Hidayat, A. (2004). Pedoman Pengumpulan Data Keanekaragaman Flora: Pengumpulan data Taksonomi. Bogor: Pusat Penelitian Biologi Bogor.

Saha, O., Hossain, Md. S., & Rahaman, Md. M. (2020). Genomic exploration light on multiple origin with potential parsimony-informative sites of the severe acute respiratory syndrome coronavirus 2 in Bangladesh. Gene Reports, 21, 100951. DOI

Salgotra, R. K., & Chauhan, B. S. (2023). Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14, 174. DOI

Sarno, & Wahyudi, A. (2018). Transfer Teknologi Pengolahan Manisan Carica Pada Kelompok Masyarakat Dieng Kulon Banjarnegara. Media Agrosains, 4(1), 16-23. website

Scheldeman, X., Willemen, L., Coppens d’Eeckenbrugge, G., Romeijn-Peeters, E., Restrepo, M. T., Romero Motoche, J., Jiménez, D., Lobo, M., Medina, C. I., Reyes, C.; Rodríguez, D., Ocampo, J. A., van Damme, P., & Goetgebeur, P. (2007). Distribution, diversity, and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. Biodiversity and Conservation, 16(6), 1867–1884. DOI

Simón, D., Cristina, J., & Musto, H. (2021). Nucleotide compotition and codon usage across viruses and their respective hosts. Frontiers in Microbiology, 12, 646300. DOI

Singh, G. (2019). Plant systematics: an integrated approach. Fourth edition. Boca Raton, London: CRC Press.

Teixeira, J. C., & Huber, C. D. (2021). The inflated significance of neutral genetic diversity in conservation genetics. Proceedings of the National Academy of Sciences, 118(10), e2015096118. DOI

Tineo, D., Bustamante, D. E., Calderon, M. S., Mendoza, J. E., Huaman, E., & Oliva, M. (2020). An integrative approach reveals five new species of highland papayas (Caricaceae, Vasconcellea) from northern Peru. PLoS ONE, 15(12), e0242469. DOI

Warnakula, W., Kottearachchi, N., & Yakandawala, K. (2017). Morphological, SSR and ISSR Marker Based Genetic Diversity Assessment of Mountain Papaya Germplasm in Comparison with Carica papaya. Journal National Science Foundation Sri Lanka, 45(3), 255-264. DOI

Warseno, T., Efendi, M., Chasani, A. R., & Daryono, B. S. (2022). Genetic variability and phylogenetic relationships of Begonia multangula based on atpB-rbcL non-coding spacer of cpDNA sequences. Biodiversitas Journal of Biological Diversity, 23(10), 5491-5501. DOI

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification And Direct Sequencing of Fungal Ribosomal RNA genes for phylogenetics. In PCR Protocols (pp. 315–322). Elsevier. DOI




DOI: http://doi.org/10.17503/agrivita.v45i3.4216

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.