Whitefly, Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) Control using a Solid Formulation of Selected Endophytic Bacteria, Bacillus pseudomycoides Strain SLBE 1.1SN

Reflinaldon Reflinaldon, Trimurti Habazar, Yulmira Yanti, Hasmiandy Hamid, Miranti Miranti

Abstract


Bemisia tabaci is a major pest in chili as it can act as a vector for transmitting the yellow curl virus. Endophytic bacteria have been reported to trigger plant defense against whiteflies. This study aimed to obtain a solid formula for the endophytic bacteria B. pseudomycoides strain SLBE1.1SN and a storage duration that effectively controls whitefly. This experimental study used a completely randomized design (CRD) consisting of 26 treatments and repeated three times. The treatments combined different types of endophytic bacterial carrier formulas and storage duration, synthetic insecticide treatment (Imidacloprid), and control. The treatments were applied to chili seeds and seedlings. The results showed that not all stored endophytic bacterial formulation could suppress the whitefly population on chili plants. The formula B. pseudomycoides strain SLBE1.1SN with rice straw as carrier material at six weeks storage was the best formula for controlling whitefly. This suggests that the formulation of stored endophytic bacteria not only reduced the number of eggs laid, but also suppressed the development of nymphs and imago.

Keywords


Chili; Formula; Plant growth-promoting rhizobacteria; Vector

Full Text:

PDF

References


Agrios, G. N. (2005). Plant pathology. In Plant Pathology (Fifth). Elsevier Academic Press.

Agustina, F., Wahyudin, N., & Purwasih, R. (2022). Optimization of red chili production in Central Bangka Regency. Society, 10(1), 65–74. DOI

Bhosale, S., & Vijayalakshmi, D. (2015). Processing and nutritional composition of rice bran. Current Research in Nutrition and Food Science, 3(1), 74–80. DOI

Bloot, A. P. M., Kalschne, D. L., Amaral, J. A. S., Baraldi, I. J., & Canan, C. (2021). A review of phytic acid sources, obtention, and applications. Food Reviews International, 39(1), 73–92. DOI

Bonnet, M., Lagier, J. C., Raoult, D., & Khelaifia, S. (2020). Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes and New Infections, 34, 100622. DOI

Brar, S. K., Verma, M., Tyagi, R. D., & Valéro, J. R. (2006). Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochemistry, 41(2), 323–342. DOI

Darmayati, Y., Wiranata, Y., Afianti, N. F., & Manurung, B. (2021). Comparison of viability and efficacy of an immobilized bacterial consortium in four different carriers to degrade oil. IOP Conference Series: Earth and Environmental Science, 789, 012016. DOI

Erdiansyah, I., Eliyatiningsih, E., Sari, V. K., Nurahmanto, D., & Prayitno, A. H. (2022). Intercropping patterns effect of cardamom and cayenne pepper on population and intensity of whitefly pest’s attacks (Bemisia tabaci). IOP Conference Series: Earth and Environmental Science, 980(1), 012010. DOI

Firdaus, M., Suherman, Wahyudi, F. ., Sauqi, A., & Widaninggar, N. (2020). Feasibility and sensitivity study of big chilli farm business in Jember Regency. Nusantara Science and Technology Proceedings, 419-424. DOI

Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., & Srinivas, V. (2016). Formulations of plant growth-promoting microbes for field applications. In D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 239–251). Springer India. DOI

Hamid, H., Yanti, Y., Joni, F. R., & Nurbailis. (2020). Tomato (Lycopersicum esculentum Mill.) resilience enhancement with indigenous endophytic bacteria against Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Animal and Plant Sciences, 30(1), 126–132. DOI

Hidayat, P., Yuliani, Y., & Sartiami, D. (2017). Identifikasi kutukebul (Hemiptera: Aleyrodidae) dari beberapa tanaman inang dan perkembangan populasinya. Jurnal Entomologi Indonesia, 3(1), 41. DOI

Howe, G. A. (2004). Jasmonates as signals in the wound response. Journal of Plant Growth Regulation, 23, 223–237. DOI

Klement, Z., Rudolph, K., & Sand, D. C. (1990). Methods in phytopathology. Akademia Kiado.

Kloeppe, J. W., Rodríguez-Kábana, R., Zehnder, G. W., Murphy, J. F., Sikora, E., & Fernández, C. (1999). Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology, 28, 21–26. DOI

Mahmud, M. A., & Anannya, F. R. (2021). Sugarcane bagasse - A source of cellulosic fiber for diverse applications. Heliyon, 7(8), e07771. DOI

Pieterse, C. M. J., Leon-Reyes, A., Van Der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316. DOI

Prihatiningsih, N., Djatmiko, H. A., & Lestari, P. (2023). Consortium of endophytic bacteria application improves grain yield of rice. Proceedings of the 3rd International Conference on Sustainable Agriculture for Rural Development (ICSARD 2022), 1, 244–250. DOI

Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V., & Samiyappan, R. (2001). Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection, 20(1), 1–11. DOI

Rosado, M. J., Rencoret, J., Marques, G., Gutiérrez, A., & del Río, J. C. (2021). Structural characteristics of the guaiacyl-rich lignins from rice (Oryza sativa L.) husks and straw. Frontiers in Plant Science, 12, 1–17. DOI

Sapwarobol, S., Saphyakhajorn, W., & Astina, J. (2021). Biological functions and activities of rice bran as a functional ingredient: A review. Nutrition and Metabolic Insights, 14, 1–11. DOI

Satyantini, W. H., Pratiwi, R. M., Sahidu, A. M., & Nindarwi, D. D. (2019). Growth of Bacillus sp. and Flavobacterium sp. in culture media with the addition of liquid whey tofu waste. IOP Conference Series: Earth and Environmental Science, 236, 012092. DOI

Siddiqui, I. A., & Shaukat, S. S. (2003). Endophytic Bacteria : Prospects and opportunities for the biological control of plant-parasitic nematodes. Nematologia Mediterranea, 31, 111–120. PDF

Valenzuela-Soto, J. H., Estrada-Hernández, M. G., Ibarra-Laclette, E., & Délano-Frier, J. P. (2010). Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta, 231, 397–410. DOI

Yanti, Y., Habazar, T., & Resti, Z. (2017). Formulasi padat rhizobakteria indigenus Bacillus thuringiensis TS2 dan waktu penyimpanan untuk mengendalikan penyakit pustul bakteri Xanthomonas axonopodis Pv. glycines. Jurnal Hama dan Penyakit Tumbuhan Tropika, 17, 9–18. DOI

Yanti, Y., Hamid, H., Nurbailis, & Suriani, N. L. (2022). Biological activity of indigenous selected plant growth promoting rhizobacteria isolates and their ability to improve the growth traits of shallot (Allium ascalonicum L.). Philippine Journal of Science, 151(6B), 2327–2340. DOI

Yanti, Y., Hamid, H., Syarif, Z., & Afeland, S. N. (2021). Selected formulations of Bacillus cereus strain SLBE3.1AP with different storage durations for control Fusarium oxysporum f. sp. capsici Chili Plants. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 6(6), 135–140. DOI

Yoswathana, N., Phuriphipat, P., Treyawutthiwat, P., & Eshtiaghi, M. N. (2010). Bioethanol production from rice straw. Energy Research Journal, 1(1), 26–31. DOI




DOI: http://doi.org/10.17503/agrivita.v45i3.4033

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.