Interaction Between Arbuscular Mycorrhizal and Antagonistic Rhizosphere Fungi in Peat Soil Enhancing Growth of Coffea liberica Seedlings

Elis Kartika, Made Deviani Duaja, Gusniwati Gusniwati, Zulkarnain Zulkarnain

Abstract


This study aimed at determining the effect of Arbuscular Mycorrhizal Fungi (AMF) and Antagonistic Rhizosphere Fungi (ARF) on growth of Coffea liberica seedlings in peat soils. Eight AMF isolates (without AMF, Glomus sp.-1a, Glomus sp.-3c, Acaulospora sp.-1b, Acaulospora sp.- 2d, Glomus sp.-1a + Glomus sp.-3c, Acaulospora sp.-1b + Acaulospora sp.-2d, and mixtures of Glomus sp.-1a + Glomus sp.-3c + Acaulospora sp.-1b + Acaulospora sp.-2d) were combined with five ARF types (without ARF, Trichoderma sp., Aspergillus sp., Gliocladium sp., and Penicillium sp.). Data were collected on the following variables: seedling height, leaf number, stem diameter, shoot and root dry weight, N and P uptake, and root infection by AMF. Results indicated that Trichoderma sp., in combination with various types of AMF, was the best ARF in promoting C. liberica seedling growth and increasing N and P uptake. On the other hand, the mixture of Glomus sp.-1a + Glomus sp.-3c combined with various types of ARF was the best AMF in promoting seedling growth and increasing N and P uptake. It can be concluded that Trichoderma sp. and the mixture of Glomus sp-1a and Glomus sp-3c were best combination to be applied to promote the C. liberica seedlings grown in peat soil.


Keywords


AMF infection; Antagonistic fungi; Arbuscular mycorrhizae; Coffea liberica

Full Text:

PDF

References


Akib, M. A., Mustari, K., Kuswinanti, T., & Syaiful, S. A. (2018). The effect of application Acaulospora sp on the root growth of Canavalia ensiformis L. at nickel post-mine land. Pakistan Journal of Biotechnology, 15(2), 583-591. website

Al-Asbahi, A. A. S. (2012). Arbuscular mycorrhizal protein mRNA overexpression in bread wheat seedlings by Trichoderma harzianum Raifi (KRL-AG2) elicitation. Gene, 494(2), 209-213. DOI

Altomare, C., Norvell, W. A., Björkman, T., & Harman, G. E. (1999). Solubilization of phosphates and micronutrients by the Plant-Growth-Promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology, 65(7), 2926–2933. DOI

Amiroh, A., Aminuddin, M. I., & Ardiansah, R. (2020). Respon pemberian macam dosis dan interval waktu apliksasi Trichoderma sp. terhadap produksi tanaman kedelai (Glycine max L.). Agroradix: Jurnal Ilmu Pertanian, 4(1), 6–14. DOI

Asmarahman, C., Budi, S. W., Wahyudi, I., & Santoso, E. (2018). Identification of potential microbes of Arbuscular Mycorrhizal Fungi (AMF) in post mining land of PT. Holcim Indonesia Tbk, Cibinong, Bogor, West Java. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan, 8(3), 279-285. DOI

Azarmi, R., Hajieghrari, B., & Giglou, A. (2011). Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 10(31), 5850-5855. DOI

Baker, R. (1989). Improved Trichoderma spp. for promoting crop productivity. Trends in Biotechnology, 7(2), 34-38. DOI

Ban, G., Akanda, S., & Maino, M. (2018). The effect of Trichoderma on the growth and development of tomato and bean under greenhouse and field conditions. Annals of Tropical Research, 40(1), 35-45. DOI

Basri, A. H. H. (2018). Kajian peranan mikoriza dalam bidang pertanian. Agrica Ekstensia, 12(2), 74-78. PDF

Bastakoti, S., Belbase, S., Manandhar, S., & Arjyal, C. (2017). Trichoderma species as biocontrol agent against soil borne fungal pathogens. Nepal Journal of Biotechnology, 5(1), 39-45. DOI

Bhattacharjee, S., & Sharma, G. D. (2012). Effect of dual inoculation of arbuscular mycorrhiza and rhizobium on the chlorophyll, nitrogen and phosphorus contents of pigeon pea (Cajanus cajan L.). Advances in Microbiology, 2(4), 561-564. DOI

Bhuvaneswari, G., Reetha, S., Sivaranjani, R., & Ramakrishnan, K. (2014). Effect of AM fungi and Trichoderma species as stimulations of growth and morphological character of chilli (Capsicum annuum L). International Journal of Current Microbiology and Applied Sciences, 3(3), 447-455. PDF

Boughalleb-M’Hamdi, N., Salem, I. B., & M’Hamdi, M. (2018). Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egyptian Journal of Biological Pest Control, 28(1), 25. DOI

Chandanie, W. A., Kubota, M., & Hyakumachi, M. (2009). Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Applied Soil Ecology, 41(3), 336-341. DOI

Colla, G., Rouphael, Y., Mattia, E. D., El-Nakhel, C., & Cardarelli, M. (2014). Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture, 95(8), 1706-1715. DOI

Commatteo, J. G., Consolo, V. F., Barbieri, P. A., & Covacevich, F. (2019). Indigenous arbuscular mycorrhiza and Trichoderma from systems with soybean predominance can improve tomato growth Soil and Environment, 38(2), 151-161. website

Contreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2020). Interactions of Trichoderma with plants, insects, and plant pathogen microorganisms: Chemical and molecular bases. In J.-M. Mérillon & K. G. Ramawat (Eds.), Co-Evolution of Secondary Metabolites (pp. 263-290). Springer International Publishing. DOI

Cutler, H. G., Himmelsbach, D. S., Arrendale, R. F., Cole, P. D., & Cox, R. H. (1989). Koninginin A: A novel plant growth regulator from Trichoderma koningii. Agricultural and Biological Chemistry, 53(10), 2605 -2611. DOI

Dehariya, K., Shukla, A., Sheikh, I. A., & Vyas, D. (2015). Trichoderma and Arbuscular Mycorrhizal Fungi based biocontrol of Fusarium udum Butler and their growth promotion effects on pigeon pea. Journal of Agricultural Science and Technology, 17(2), 505-517. website

Dendang, B. & Hani, A. (2018). Quality improvement of nyamplung (Calophyllum inophyllum L.) and malapari (Pongamia pinnata L.) seedlings by Trichoderma spp. and mycorrhizal applications. Jurnal Pemuliaan Tanaman Hutan, 12(1), 75-84. DOI

Domínguez, S., Rubio, M. B., Cardoza, R. E., Gutiérrez, S., Nicolás, C., Bettiol, W., Hermosa, R., & Monte, E. (2016). Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidulans Acetamidase amdS gene. Frontiers in Microbiology, 7, 1182. DOI

Doni, F., Anizan, I., Radziah, C. M. Z. C., Salman, A. H., Rodzihan, M. H., & Yusoff, W. M. W. (2014). Enhancement of rice seed germination and vigour by Trichoderma spp. Research Journal of Applied Sciences, Engineering and Technology, 7(21), 4547-4552. DOI

Duc, N. H., Mayer, Z., Pék, Z., Helyes, L., & Posta, K. (2017). Combined inoculation of Arbuscular Mycorrhizal Fungi, Pseudomonas fluorescens and Trichoderma spp. for enhancing defense enzymes and yield of three pepper cultivars. Applied Ecology And Environmental Research, 15(3), 1815-1829. DOI

Dwiastuti, M. E., Fajri, M. N., & Yunimar. (2015). Potential of Trichoderma spp. as a control agents of Fusarium spp. pathogens on strawberry (Fragaria x ananassa Dutch.). Jurnal Hortikultura, 25(4), 331-339. PDF

Fotoohiyan, Z., Rezaee, S., Bonjar, G. H. S., Mohammadi, A. H., & Moradi, M. (2017). Biocontrol potential of Trichoderma harzianum in controlling wilt disease of pistachio caused by Verticillium dahliae. Journal of Plant Protection Research, 57(2), 185-193. DOI

França, A. C., de Freitas, A. F., dos Santos, E. A., Grazziotti, P. H., & de Andrade Júnior, V. C. (2016). Mycorrhizal fungi increase coffee plants competitiveness against Bidens pilosa interference. Pesquisa Agropecuária Tropical, 46(2), 132-139. DOI

Gómez-Muñoz, B., Jensen, L. S., de Neergaard, A., Richardson, A. E., & Magid, J. (2018). Effects of Penicillium bilaii on maize growth are mediated by available phosphorus. Plant Soil, 431, 159-173. DOI

Ha, T. N. (2010). Using Trichoderma species for biological control of plant pathogens in Vietnam. Journal of the International Society for Southeast Asian Agricultural Sciences, 16(1), 17-21. PDF

Halifu, S., Deng, X., Song, X., & Song, R. (2019). Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests, 10(9), 758. DOI

Haneefat, O. E., Sobowale, A. A., Ilusanya, O. A. F., & Feyisola, R. T. (2012). The influence of Glomus mosseae and Trichoderma harzianum on phytohormone production in soybeans (Glycine max L. Merr) planted in sterilized and unsterilized soils. Journal of Experimental Agriculture International, 2(3), 516–524. DOI

Hart, M., Ehret, D. L., Krumbein, A., Leung, C., Murch, S., Turi, C., & Franken, P. (2014). Inoculation with Arbuscular Mycorrhizal Fungi improves the nutritional value of tomatoes. Mycorrhiza, 25(5), 359-376. DOI

Idowu, O. O., Olawole, O. I., Idumu, O. O., & Salami, A. O. (2015). Bio-control effect of Trichoderma asperellum (Samuels) Lieckf. and Glomus intraradices Schenk on okra seedlings infected with Pythium aphanidermatum (Edson) Fitzp and Erwinia carotovora (Jones). Journal of Experimental Agriculture International, 10(4), 1–12. DOI

Iula, G., Miras-Moreno, B., Lucini, L., & Trevisan, M. (2021). The mycorrhiza-and trichoderma-mediated elicitation of secondary metabolism and modulation of phytohormone profile in tomato plants. Horticulturae, 7(10), 394. DOI

Kartika, E., Duaja, M. D., & Gusniwati. (2017). Pengembangan Teknologi Fungi Rhizosfir Indigenous dan Top Grafting dalam rangka Penyelamatan Plasma Nutfah Tanaman Kopi Liberika Tungkal Jambi di Lahan Gambut. Universitas Jambi.

Kartika, E., Duaja, M. D., & Gusniwati. (2019). Diversity of Arbuscular Mycorrhiza Fungi from Liberica Tungkal Jambi cofee plant rhizosphere on peatland. IOP Conference Series: Earth and Environmental Science 391, 012058. DOI

Kartika, E., Lizawati, & Hamzah. (2018). Respons tanaman jarak pagar terhadap mikoriza Indigenous dan pupuk P di lahan bekas tambang batu bara. Biospecies, 11(1), 10-18. DOI

Khan, M. Y., Haque, M. M., Mollaa, A. H., Rahman, M. M., & Alam, M. Z. (2017). Antioxidant compounds and minerals in tomatoes by Trichoderma-enriched biofertilizer and their relationship with the soil environments. Journal of Integrative Agriculture, 16(3), 691-703. DOI

Kleifeld, O., & Chet, I. (1992). Trichoderma harzianum - interaction with plants and effect on growth response. Plant and Soil, 144(2), 267-272. DOI

Kormanik, P. P., & McGraw, A. C. (1982). Quantification of Vesicular-Arbuscular Mycorrhizae in Plant Root. The American Phytopathological Society.

Kour, M., & Kaur, L. (2022). Trichoderma as a Bio-Control Agent - A Review. International Journal of Current Microbiology and Applied Sciences, 11(6), 103-108. DOI

Krisdayani, P. M., Proborini, M. W., & Kriswiyanti, E. (2020). Pengaruh kombinasi pupuk hayati endomikoriza, Trichoderma spp. dan pupuk kompos terhadap pertumbuhan bibit sengon (Paraserianthes falcataria (L.) Nielsen). Jurnal Sylva Lestari, 8(3), 400-410. DOI

Krishnamoorthy, R., Kim, C.-G., Subramanian, P., Kim, K.-Y., Selvakumar, G., & Sa, T.-M. (2015). Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS ONE, 10(6), e0128784. DOI

Margarettha. (2014). The Inoculation of indigenous Arbuscular Mycorrhiza Fungi for seedling rubber in coal-mined soil. Jurnal Lahan Suboptimal, 3(2), 193-200. website

Marwani, E., Suryatmana, P., Kerana, I. W., Puspanikan, D. L., Setiawati, M. R., & Manurung, R. (2013). Peran Mikoriza Vesikular Arbuskular dalam penyerapan nutrien, pertumbuhan, dan kadar minyak jarak (Jatropha curcas L.). Bionatura-Jurnal Ilmu-ilmu Hayati dan Fisik, 15(1), 1-7. website

Masyarakat Perlindungan Indikasi Geografis Kopi Liberika Tungkal Jambi. (2015). Buku Persyaratan Indikasi Geografis: Kopi Liberika Tungkal Jambi. Direktorat Jenderal Kekayaan Intelektual, Kementerian Hukum dan Hak Azasi Manusia RI.

Metwally, R. A., & Al-Amri, S. M. (2020). Individual and interactive role of Trichoderma viride and Arbuscular Mycorrhizal Fungi on growth and pigment content of onion plants. Letters in Applied Microbiology, 70(2), 79-86. DOI

Metwally, R. A., Soliman, S. A., Abdel Latef, A. A. H., & Abdelhameed, R. E. (2021). The individual and interactive role of arbuscular mycorrhizal fungi and Trichoderma viride on growth, protein content, amino acids fractionation, and phosphatases enzyme activities of onion plants amended with fish waste. Ecotoxicology and Environmental Safety, 214, 112072. DOI

Nafady, N. A., Sultan, R., El-Zawahry, A. M., Mostafa, Y. S., Alamri, S., Mostafa, R. G., Hashem, M., & Hassan, E. A. (2022). Effective and promising strategy in management of tomato root-knot nematodes by Trichoderma harzianum and arbuscular mycorrhizae. Agronomy, 12(2), 315. DOI

Ndiaye, M., Cavalli, E., Manga, A. G. B., & Diop, T. A. (2011). Improved Acacia senegal growth after inoculation with arbuscular mycorrhizal fungi under water deficiency conditions. International Journal of Agriculture and Biology, 13(2), 271-274. website

Nzanza, B., Marais, D., & Soundy, P. (2012). Yield and nutrient content of tomato (Solanum lycopersicum L.) as influenced by Trichoderma harzianum and Glomus mosseae inoculation. Scientia Horticulturae, 144, 55-59. DOI

Poveda, J., Hermosa, R., Monte, E., & Nicolás, C. (2019). Trichoderma harzianum favours the access of Arbuscular Mycorrhizal Fungi to non-host Brassicaceae roots and increases plant productivity. Scientific Reports, 9, 11650. DOI

Rini, M. V. (2001). Effect of Arbuscular Mycorrhiza on Oil Palm Seedling Growth and Development of Basal Stem Rot Disease Caused by Ganoderma Boninense [PhD thesis, Universiti Putra Malaysia]. website

Rita, Z. R., Maulana, M., & Nazalia. (2021). Identification of Arbuscular Mychorizae Fungi on oil palm in Bireuen, Aceh SEAS (Sustainable Environment Agricultural Science), 5(2), 114-121. DOI

Ruliyanti, W., & Majid, A. (2020). The effect of vermicompost on planting media on the effectiveness of Gliocladium sp. in controlling Fusarium wilt disease (Fusarium oxysporum) in watermelons (Citrulus vulgaris Schard). Jurnal Pengendalian Hayati, 3(1), 14-21. DOI

Sanana, S. T. S., Asmarahman, C., Riniarti, M., & Duryat. (2022). Diversity of Arbuscular Mycorrhizal Fungi in the rhizosphere of the revegetation area of PT Natarang Mining. Jurnal Belantara, 5(1), 81-95. DOI

Sharma, S., Sharma, A. K., Prasad, R., & Varma, A. (2017). Arbuscular mycorrhiza: a tool for enhancing crop production. In A. Varma, R. Prasad, & N. Tuteja (Eds.), Mycorrhiza – Nutrient Uptake, Biocontrol, Ecorestoration (pp. 235-250). Springer International Publishing. DOI

Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. DOI

Sofian, K., Syah, R. F., & Hastuti, P. B. (2022). Aplikasi Trichoderma dan mikoriza: Meningkatkan pertumbuhan bibit kelapa sawit di pre nursery. Agroista:Jurnal Agroteknologi, 6(1), 1-10. DOI

Sohrabi, F., Sheikholeslami, M., Heydari, R., Rezaee, S., & Sharifi, R. (2020). Investigating the efect of Glomus mosseae, Bacillus subtilis and Trichoderma harzianum on plant growth and controlling Meloidogyne javanica in tomato. Indian Phytopathology, 73, 293-300. DOI

Sriwati, R., Chamzurn, T., Soesanto, L., & Munazhirah. (2019). Field application of trichoderma suspension to control cacao pod rot (Phytophthora palmivora). AGRIVITA Journal of Agricultural Science, 41(1), 175-182. DOI

Suryati, T. (2017). Study of Arbuscular Mycorrhizal Fungi in tin post-mining land of Central Bangka Regency. Jurnal Teknologi Lingkungan, 18(1), 45-53. DOI

Susilo, E. (2018). The influence of mycorrhiza from different sources on the growth of cacao seeds in Ultisol soil. Agritepa, 4(2), 84-93. DOI

Sylvia, D. M., & Chellemi, D. O. (2001). Interactions among root-inhabiting fungi and their implications for biological control of root pathogens. Advances in Agronomy, 73, 1-33. DOI

Szczałba, M., Kopta, T., Gąstoł, M., & Sękara, A. (2019). Comprehensive insight into Arbuscular Mycorrhizal Fungi, Trichoderma spp. and plant multilevel interactions with emphasis on biostimulation of horticultural crops. Journal of Applied Microbiology, 127(3), 630-647. DOI

Tjamos, E. C., Tjamos, S. E., & Antoniou, P. P. (2010). Biological management of plant diseases: Highlights on research and application. Journal of Plant Pathology, 92(4, Supplement), S17-S21. DOI

Tomo, Y., & Prasetya, B. (2021). Exploration of arbuscular mycorrhiza on various soil depths in bull grass rooting zone on post-mining land. Jurnal Tanah dan Sumberdaya Lahan, 8(2), 341-347. DOI

Treseder, K. K. (2013). The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant and Soil, 371(1-2), 1-13. DOI

Tsvetkov, I., Dzhambazova, T., Kondakova, V., & Batchvarova, R. (2014). Mycorrhizal fungi Glomus spp. and Trichoderma spp. in viticulture (review). Bulgarian Journal of Agricultural Science, 20(4), 849-855. website

Valentine, K., Herlina, N., & Aini, N. (2017). Pengaruh pemberian mikoriza dan Trichoderma sp. terhadap pertumbuhan dan hasil produksi benih melon hibrida (Cucumis melo L.). Jurnal Produksi Tanaman, 5(7), 1085-1092. website

Watts-Williams, S. J., Turney, T. W., Patti, A. F., & Cavagnaro, T. R. (2014). Uptake of zinc and phosphorus by plants is affected by zinc fertilizer material and arbuscular mycorrhizas. Plant and Soil, 376(1-2), 165-175. DOI

Windham, M. T., Elad, Y., & Baker, R. (1986). A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology, 76, 518-521. DOI

Wu, Q.-S., & Zou, Y.-N. (2010). Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Scientia Horticulturae, 125(3), 289-293. DOI

Yadav, A., & Aggarwal, A. (2015). The associative effect of arbuscular mycorrhizae with Trichoderma viride and Pseudomonas fluorescens in promoting growth, nutrient uptake and yield of Arachis hypogaea L. New York Science Journal, 8(1), 101-108. PDF

Yadav, A., Yadav, K., & Aggarwal, A. (2015). Impact of Arbuscular Mycorrhizal Fungi with Trichoderma viride and Pseudomonas fluorescens on growth, yield and oil content in Helianthus annuus L. . Journal of Essential Oil Bearing Plants, 18(2), 444-454. DOI

Zhu, X. C., Song, F. B., Liu, S. Q., Liu, T. D., & Zhou, X. (2012). Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant, Soil and Environment, 58(4), 186–191. DOI

Zydlik, Z., Zydlik, P., & Wieczorek, R. (2021). The effects of bioinoculants based on mycorrhizal and Trichoderma spp. fungi in an apple tree nursery under replantation conditions. Agronomy, 11(11), 2355. DOI




DOI: http://doi.org/10.17503/agrivita.v45i3.4025

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.