Generating Long-Read Sequences of Balsa (Ochroma pyramidale (Cav. ex Lam.) Urb.) Using Minion Oxford Nanopore Technology and Utilization for Phylogenetic Study

Siska Nurfajri, Fifi Gus Dwiyanti, Rahadian Pratama, Muhammad Majiidu, Iskandar Z. Siregar

Abstract


Balsa (Ochroma pyramidale) is fast-growing forest plant species introduced to Indonesia with limited genetic information. Genetic information can be obtained through molecular assessment which is now feasible due to sequencing technology development. This is supported by the third-generation sequencer technology, which has been developed using long-read sequencing technology. MinION Oxford Nanopore Technology is one of the long-read sequence-based sequencers with a real-time process and portable. This study aims to generate genomic data and analyze the phylogenetic relationship of balsa (O. pyramidale) based on long-read sequences with MinION Oxford Nanopore Technologies. Balsa long-read sequencing generated a partial chloroplast genome (cpDNA) sequence of 155,430 bp, which can be used for further DNA barcode-based phylogenetic analysis from the chloroplast genome. Phylogenetic analysis showed that the balsa species (O. pyramidale) was genetically grouped in one clade with other O. pyramidale species in phylogeny analysis based on rbcL, matK, and a combination of rbcL and matK genes indicated that those genes were a suitable marker for phylogenetic analysis in balsa species (O. pyramidale).

Keywords


matK; MinION; Ochroma pyramidale; Phylogeny; rbcL

Full Text:

PDF

References


Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E., & Gouil, Q. (2020). Opportunities and challenges in long-read sequencing data analysis. Genome Biology, 21(1), 1–16. DOI

Batista, F. M., Stapleton, T., Lowther, J. A., Fonseca, V. G., Shaw, R., Pond, C., Walker, D. I., van Aerle, R., & Martinez-Urtaza, J. (2020). Whole Genome Sequencing of Hepatitis A Virus Using a PCR-Free Single-Molecule Nanopore Sequencing Approach. Frontiers in Microbiology, 11(May), 1–9. DOI

Bhalerao, R., Nilsson, O., & Sandberg, G. (2003). Out of the woods: Forest biotechnology enters the genomic era. Current Opinion in Biotechnology, 14(2), 206–213. DOI

Carvalho-Sobrinho, J. G., Alverson, W. S., Alcantara, S., Queiroz, L. P., Mota, A. C., & Baum, D. A. (2016). Revisiting the phylogeny of Bombacoideae (Malvaceae): Novel relationships, morphologically cohesive clades, and a new tribal classification based on multilocus phylogenetic analyses. Molecular Phylogenetics and Evolution, 101, 56–74. DOI

Cummings, M. P., Nugent, J. M., Olmstead, R. G., & Palmer, J. D. (2003). Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms. Current Genetics, 43(2), 131–138. DOI

De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666–2669. DOI

Delahaye, C., & Nicolas, J. (2021) Sequencing DNA with nanopores: Troubles and biases. PLoS ONE 16(10): e0257521. DOI

Dharmayanti, N. (2011). Filogenetika Molekuler : Metode Taksonomi Organisme Berdasarkan Sejarah Evolusi. WARTAZOA, 21(1), 1–10. DOI

Dobrogojski, J., Adamiec, M., & Luciński, R. (2020). The chloroplast genome: a review. Acta Physiologiae Plantarum, 42(6), 1–13. DOI

Doyle, J.J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15. website

Dumschott, K., Schmidt, M. H. W., Chawla, H. S., Snowdon, R., & Usadel, B. (2020). Oxford Nanopore sequencing: new opportunities for plant genomics? Journal of Experimental Botany, 71(18), 5313–5322. DOI

Gao, Y., Wang, H., Liu, C., Chu, H., Yan, Y., & Tang, L. (2018a). Complete chloroplast genome sequence of the red silk cotton tree (Bombax ceiba). Mitochondrial DNA Part B: Resources, 3(1), 315–316. DOI

Gao, Y., Wang, H., Liu, C., Chu, H., Dai, D., Song, S., Yu, L., Han, L., Fu, Y., Tian, B., & Tang, L. (2018b). De novo genome assembly of the red silk cotton tree (Bombax ceiba). GigaScience, 7(5), 1–7. DOI

Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30(5), 1229–1235. DOI

Hartati, N., Sudarmonowati, E., Fatriasari, W., Hermiati, E., Dwianto, W., Kaida, R., Baba, K., Hayashi, T., Sri Hartati, N., Sudarmonowati, E., Fatriasari, W., Hermiati, E., Dwianto, W., Kaida, R., Baba, ichi, & Hayashi, T. (2010). Wood Characteristic of Superior Sengon Collection and Prospect of Wood Properties Improvement through Genetic Engineering. Wood Research Journal, 1(2), 103–107. website

Hollingsworth, P. M. (2011). Refining the DNA barcode for land plants. Proceedings of the National Academy of Sciences (PNAS), 108(49), 19451-19452. DOI

Howcroft, N. (2002). The Balsa Manual : Techiniques For Establishiment and The Management of Balsa (Ochroma pyamidale) plantation in Papua New Guinea. Keravat(PNG): International Tropical Timbers Organisation. PDF

Ide, Y. (2021). Genetics and improvement of forest trees. Forests, 12(2), 1–3. DOI

İnce, A. G., Karaca, M., Onus, A. N., & Bilgen, M. (2005). Chloroplast matK gene phylogeny of some important species of plants. Akdeniz ÜNiversitesi Ziraat FaküLtesi Dergisi, 18(2), 157-162. website

Ismail, M., Ahmad, A., Nadeem, M., Javed, M. A., Khan, S. H., Khawaish, I., Sthanadar, A. A., Qari, S. H., Alghanem, S. M., Khan, K. A., Khan, M. F., & Qamer, S. (2020). Development of DNA barcodes for selected Acacia species by using rbcL and matK DNA markers. Saudi Journal of Biological Sciences, 27(12), 3735–3742. DOI

Istiqomah, F. N., Budi, S. W., & Wulandari, A. S. (2017). Peran fungi mikoriza arbuskula (FMA) dan asam humat terhadap pertumbuhan balsa (Ochroma bicolor Rowlee.) pada tanah terkontaminasi timbal (Pb). Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 7(1), 72–78. DOI

Kress, W.J., Prince, L. M., & Williams, K. J. (2002). The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data. American Journal of Botany, 89(10), 1682–1696. DOI

Ju, M.M., Ma, H.C., Xin, P.Y., Zhou, Z.L., & Tian, B. (2015). Development and Characterization of EST-SSR Markers in Bombax ceiba (Malvaceae). Applications in Plant Sciences, 3(4), 1500001. DOI

Kolondam, B. J., Lengkong, E., J. Polii, M., Pinaria, A., & Runtunuwu, S. (2012). Barcode DNA berdasarkan gen rbcL dan matK anggrek payus limondok (Phaius tancarvilleae) (DNA barcode of payus limondok orchid (Phaius tancarvilleae) based on the rbcL and matK genes). Jurnal Bios Logos, 4(2). DOI

Kotlarewski, N. J., Belleville, B., Gusamo, B. K., & Ozarska, B. (2016). Mechanical properties of Papua New Guinea balsa wood. European Journal of Wood and Wood Products, 74(1), 83–89. DOI

Lee, Y. G., Choi, S. C., Kang, Y., Kim, K. M., Kang, C. S., & Kim, C. (2019). Constructing a reference genome in a single lab: The possibility to use oxford nanopore technology. Plants, 8(8), 1–13. DOI

Lestari, D. A., Azrianingsih, R., & Hendrian, H. (2018). Filogenetik Jenis-jenis Annonaceae dari Jawa Timur Koleksi Kebun Raya Purwodadi Berdasarkan Coding dan Non-coding sekuen DNA. Journal of Tropical Biodiversity and Biotechnology, 3(1), 1. DOI

Letunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. DOI

Lian, C., Yang, H., Lan, J., Zhang, X., Zhang, F., Yang, J., & Chen, S. (2022). Comparative analysis of chloroplast genomes reveals phylogenetic relationships and intraspecific variation in the medicinal plant Isodon rubescens. PLoS ONE, 17(4 April), 1–18. DOI

Listyanto, T., Poedyastanto, E.P.F., Abqoriah, S.M., & Lukmandaru, G. (2021). Specific gravity, extractive content, and natural durability of balsa (Ochroma pyramidale) wood at 3 and 4 years old. IOP Conf. Series: Earth and Environmental Science. 891, 012013. DOI

Lu, H., Giordano, F., & Ning, Z. (2016). Oxford Nanopore MinION Sequencing and Genome Assembly. Genomics, Proteomics and Bioinformatics, 14(5), 265–279. DOI

Mikheenko A, Prjibelski A, Saveliev V, Antipov D, & Gurevich A. (2018). Versatile genome assembly evaluation with QUAST-LG. Bioinformatics, 34(13), i142 - i150. DOI

Mikheyev, A. S., & Tin, M. M. Y. (2014). A first look at the Oxford Nanopore MinION sequencer. Molecular Ecology Resources, 14(6), 1097–1102. DOI

Mursyidin, D.H., & Makruf, M.I. (2020). Keanekaragaman dan kekerabatan genetik artocarpus berdasarkan penanda dna kloroplas matK & rbcL: kajian in silico. Floribunda, 6(5). DOI

Mursyidin, D. H., Ahyar, G. M. Z., Saputra, A. W., & Hidayat, A. (2021). Genetic diversity and relationships of Phalaenopsis based on the rbcL and trnL-F markers: In silico approach. Biosaintifika: Journal of Biology & Biology Education, 13(2), 212–221. DOI

Nurhasanah, Sundari, & Papuangan, N. (2019). Amplification and analysis of rbcl gene (ribulose-1,5-bisphosphate carboxylase) of clove in Ternate Island. IOP Conference Series: Earth and Environmental Science, 276(1). DOI

Nuryamah. (2017). Knowledge management (S. Noviani (ed.); Maret-April, Issue April). PUPR. website

Oosterbroek, S., Doorenspleet, K., Nijland, R., & Jansen, L. (2021). Decona: From demultiplexing to consensus for Nanopore amplicon data. ARPHA Conference Abstracts, 4, 10–11. DOI

Palmer, J. D., Jansen, R. K., Michaels, H. J., Chase, M. W., James, R., Palmer, D., & Manhart, J. R. (1988). Chloroplast DNA variation and plant phylogeny. Annals of the Missouri Botanical Garden, 75(4), 1180–1206. DOI

Pertiwi, Y.A.B, Ishiguri, F., Aiso, H., Oshima, J., & Yokota, S. (2017). Wood properties of 7-year-old balsa (Ochroma pyramidale) planted in East Java. International Wood Products Journal, 8(4),1–6. DOI

Piskata, Z., Servusova, E., Babak, V., Nesvadbova, M., & Borilova, G. (2019). The quality of DNA isolated from processed food and feed via different extraction procedures. Molecules, 24(6), 1–10. DOI

Rachmat, H.H., Subiakto, A., & Susilowati, A. (2019). Genetic resources of fast-growing tree for rehabilitating upland area of deteriorated Saguling catchment, West Java, Indonesia. Biodiversitas, 20(2), 442–447. DOI

Roslim, D. I., Oktavia, S., & Herman. (2015). Analisis sebagian sekuen DNA dari gen MEISA1 pada ubi kayu (Manihot esculenta Crantz.) genotipe menggalo dan roti. Jurnal Dinamika Pertanian, 30(2), 109–116. website

Salindeho, R. A., Dwiyanti, F. G., Pratama, R. Matra, D .D., Majiidu, M., Fatlan, K. F., & Siregar, I. Z. (2023). Understanding Diospyros rumphii Bakh from North Sulawesi through long-read sequences analysis using MinION Oxford Nanopore Technologies. IOP Conf. Series: Earth and Environmental Science, 1188 (012035), 1–9. DOI

Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., McVeigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database, 2020(2), 1–21. DOI

Selvaraj, D., Sarma, R. K., & Sathishkumar, R. (2008). Phylogenetic analysis of chloroplast matK gene from Zingiberaceae for plant DNA barcoding. Bioinformation, 3(1), 24–27. DOI

Sindiya, V., Mukarramah, L., Rohimah, S., Al GhifariPerwitasari, D., & Su’udi, M. (2018). Studi in silico potensi dna barcode pada anggrek langka Paphiopedilum. BIOSFER : Jurnal Biologi Dan Pendidikan Biologi, 3(1), 20–26. DOI

Siregar, I. Z., Dwiyanti, F. G., Pratama, R., Matra, D. D., & Majiidu, M. (2021). Generating long-read sequences using Oxford Nanopore Technology from Diospyros celebica genomic DNA. BMC Research Notes, 14(75), 1–4. DOI

Sundari. (2018). Teknik isolasi DNA genom tanaman cengkeh dengan menggunakan modifikasi bufer CTAB (DNA isolation technique of clove plant genomes using CTAB buffer modification). Jurnal Biologi Edukasi Edisi, 21, 21–26. website

Taberlet, P., Gielly, L., Pautou, G., Bouvet, J., Biologie, L. De, & Fourier, U. J. (1991). Plant universal primer. Plant Molecular Biology, 17(ii), 1105–1109. DOI

Tabita, F. R., Hanson, T. E., Satagopan, S., Witte, B. H., & Kreel, N. E. (2008). Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1504), 2629–2640. DOI

Tasma, I. M., Satyawan, D., & Rijzaani, H. (2016). Pembentukan pustaka genom, resekuensing, dan identifikasi SNP berdasarkan sekuen genom total genotipe kedelai Indonesia. Jurnal AgroBiogen, 11(1), 7. DOI

Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E. S., Fischer, A., Bock, R., & Greiner, S. (2017). GeSeq - Versatile and accurate annotation of organelle genomes. Nucleic Acids Research, 45(W1), W6–W11. DOI

Vallée, G. C., Muñoz, D. S., & Sankoff, D. (2016). Economic importance, taxonomic representation and scientific priority as drivers of genome sequencing projects. BMC Genomics, 17(782), 125–186. DOI

Wahyuni, D., Dwiyanti, F. G., Pratama, R., Majiidu, M., Rachmat, H. H., & Siregar, I. Z. (2021). Chloroplast Genome draft of Dryobalanops aromatica generated using Oxford Nanopore Technology and its Potential application for phylogenetic study. Forests, 12(1515), 1–14. DOI

Wattoo, J. I., Saleem, M. Z., Shahzad, M. S., Arif, A., Hameed, A. & Saleem, M.A. (2016). DNA Barcoding: amplification and sequence analysis of rbcL and matK genome regions in three divergent plant species. Advancements in Life Science, 4(1), 3–7. DOI

Wijoyo, S. S., Santosa, A., & P, C. J. (2018). Perancangan furnitur dengan material kayu balsa. Jurnal Intra, 6(2), 105–115. website

Wulansari, N., Nurilmala, M., & Nurjanah, N. (2015). Detection tuna and processed products based protein and DNA barcoding. Jurnal Pengolahan Hasil Perikanan Indonesia, 18(2), 119–127. DOI

Yang, Y., Jiang, X. T., & Zhang, T. (2014). Evaluation of a hybrid approach using UBLAST and BLASTX for metagenomic sequences annotation of specific functional genes. PLoS ONE, 9(10). DOI

Zanzibar, M. (2017). The type of dormancy and pre treatment for breaking dormancy of balsa (Ochroma bicolor ROWLEE) seed. Jurnal Perbenihan Tanaman Hutan, 5(1), 51–60. DOI




DOI: http://doi.org/10.17503/agrivita.v41i0.3930

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.