Nutritional and Agronomical Performance of Five Rice Varieties Cultivated in Saline Soils Amended with Leonardite

Reina Medina Litardo, Sady García Bendezú, Manuel Carrillo Zenteno, Iris Perez-Almeida, Fernando Javier Cobos Mora

Abstract


Salinity affects 800 million hectares of agricultural soils in the world and represents a serious concern for crop production. The soils of the San Jacinto de Yaguachi canton (Guayas province, Ecuador), where rice has traditionally been grown with low yield, are characterized as saline. This research aimed to evaluate the agronomical performance and yield of five commercial rice varieties (INIAP FL-Arenillas, SFL 011, INIAP 14, INIAP 11, and Fedearroz 60) grown in a saline soil amended with leonardite (150 kg/ha). A randomized complete block design was used in a split-plot arrangement with three repetitions; the leonardite amendments corresponded to the main plot, and the rice varieties to the sub-plots. At harvest time, in the amended plots, increments in plant height, number of tillers, panicle number and length, number of grains per panicle, grain weight, and yield were obtained. Nutrient uptake also increased in the amended plants, with the sole exception of phosphorus, which responded poorly to the treatment. Under these conditions, it is concluded that the use of the leonardite amendment can be an effective practice for obtaining significantly higher rice production in saline soils.


Keywords


Amendments; Ecuador; Rice; Salinity; Soils

Full Text:

PDF

References


Akimbekov, N., Qiao, X., Digel, I., Abdieva, G., Ualieva, P., & Zhubanova, A. (2020). The effect of leonardite-derived amendments on soil microbiome structure and potato yield. Agriculture, 10(5), 147. DOI

Al-bourky, R. H., Manshood, M. A., Mahmoud, M. R., & Al-mousawy, S. T. (2021). Effect of humic acid on growth and yield several genotypes of rice (Oryza sativa L.). IOP Conference Series: Earth and EnviroNTental Science, 923(1), 012059. DOI

Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77. DOI

Ayón, F., Veliz, D., & Gabriel, J. (2017). The cowpea (Vigna unguiculata L. Walp) and its response to the application of humic acids (HA´s) in Canton Jipijapa in Ecuador. Journal of the Selva Andina Biosphere, 5(1), 4–14. DOI

Bacilio, M., Moreno, M., & Bashan, Y. (2016). Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Applied Soil Ecology, 107, 394–404. DOI

Bao, Y., Huang, L., Li, Y., Wang, M., & Liang, Z. (2018). How different nitrogen application rates affect yield composition and nitrogen uptake of rice (Oryza sativa L.) in a saline-sodic paddy field. Polish Journal of Environmental Studies, 28(2), 553-564. DOI

Das, P., Nutan, K. K., Singla-Pareek, S. L., & Pareek, A. (2015). Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice. Frontiers in Plant Science, 6, 712. DOI

De Hita, D., Fuentes, M., Fernández, V., Zamarreño, A. M., Olaetxea, M., & García-Mina, J. M. (2020). Discriminating the short-term action of root and foliar application of humic acids on plant growth: Emerging role of jasmonic acid. Frontiers in Plant Science, 11, 493. DOI

FAO. (2021). The state of the world’s land and water resources for food and agriculture – Systems at breaking point. Synthesis report 2021. Rome. DOI

FAO. (2015). World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps 106. Roma. p. 203. PDF

Geary, B., Clark, J., Hopkins, B. G., & Jolley, V. D. (2015). Deficient, adequate and excess nitrogen levels established in hydroponics for biotic and abiotic stress-interaction studies in potato. Journal of Plant Nutrition, 38(1), 41–50. DOI

Gutiérrez, C., González, C., Segura, C., Sánchez, C., Orozco, V., & Fortis, H. (2015). Effect of humic acids from leonardite on the stability of soil aggregates and melon roots under greenhouse conditions. Phyton, 84(2), 298-305. DOI

Haque, M. M., Datta, J., Ahmed, T., Ehsanullah, M., Karim, M. N., Akter, Mt. S., Iqbal, M. A., Baazeem, A., Hadifa, A., Ahmed, S., & El Sabagh, A. (2021). Organic amendments boost soil fertility and rice productivity and reduce methane emissions from paddy fields under sub-tropical conditions. Sustainability, 13(6), 3103. DOI

Hoque, T., Jahan, I., Islam, M., & Ahmed, M. (2018). Performance of different organic fertilizers in improving growth and yield of boro rice. SAARC Journal of Agriculture, 16(2), 153–166. DOI

Hou, W., Yan, J., Jákli, B., Lu, J., Ren, T., Cong, R., & Li, X. (2018). Synergistic effects of nitrogen and potassium on quantitative limitations to photosynthesis in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 66(20), 5125–5132. DOI

INAMHI (National Institute of Meteorology and Hydrology). (2017). Anuario Meteorológico. Quito, Ecuador. no. 53. website

INEC-ESPAC (National Institute of Statistics and Census- Surface and Agricultural Production Survey (2021). website

INPOFOS (Potassium and Phosphorus Institute). (2002). Crop nutritional requirements. Archives of Agronomy. no. 3. Potash and Phosphate Institute IPNI, Quebec, Canada. 4 p.

Iqbal, A., He, L., Ali, I., Ullah, S., Khan, A., Khan, A., Akhtar, K., Wei, S., Zhao, Q., Zhang, J., & Jiang, L. (2020). Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PLOS ONE, 15(10), e0238934. DOI

Ismael, F., Ndayiragije, A., & Fangueiro, D. (2021). New fertilizer strategies combining manure and urea for improved rice growth in Mozambique. Agronomy, 11(4), 783. DOI

Ma, L., Liu, X., Lv, W., & Yang, Y. (2022). Molecular mechanisms of plant responses to salt stress. Frontiers in Plant Science, 13, 934877. DOI

MAG (Ministry of Agriculture and Livestock). (2020). Executive Summary of the Territorial Diagnostics of the Agrarian Sector. Ministry of Agriculture and Livestock - General Coordination of Planning and Strategic Management. Quito – Ecuador. PDF

Medina Litardo, R. C., García Bendezú, S. J., Carrillo Zenteno, M. D., Pérez-Almeida, I. B., Parismoreno, L. L., & Lombeida García, E. D. (2022). Effect of mineral and organic amendments on rice growth and yield in saline soils. Journal of the Saudi Society of Agricultural Sciences, 21(1), 29–37. DOI

Moe, K., Htwe, A. Z., Dien, D. C., Kajihara, Y., & Yamakawa, T. (2020). Effects of organic fertilizer applied using the estimated mineralizable nitrogen method on nitrogen uptake, growth characteristics, yield, and yield components of Genkitsukushi rice (Oryza sativa). Journal of Plant Nutrition, 43(10), 1400–1417. DOI

Moe, K., Mg, K.W., Win, K.K., & Yamakawa, Y. (2017). Combined effect of organic manures and inorganic fertilizers on the growth and yield of hybrid rice (Palethwe-1). American Journal of Plant Sciences, 8(5), 1022-1042. DOI

Murtaza, B., Murtaza, G., Sabir, M., Amjad, M., & Imran, M. (2016). Nitrogen management in rice-wheat cropping system in salt-affected soils. In K. R. Hakeem, J. Akhtar, & M. Sabir (Eds.), Soil Science: Agricultural and EnviroNTental Prospectives (pp. 67–89). Springer International Publishing. DOI

Ouni, Y., Ghnaya, T., Montemurro, F., Abdellya Ch., & Lakhdar, A. (2014). The role of humic substances in mitigating the harmful effects of soil salinity and improve plant productivity. International Journal of Plant Production, 3(8), 353 - 374. PDF

Saha, R., Saieed, M. A. U., & Chowdhury, M. A. (2013). Growth and yield of rice (Oryza sativa L.) as influenced by humic acid and poultry manure. Universal Journal of Plant Science, 1(3), 78-84. DOI

Sakulthaew, C., Watcharenwong, A., Chokejaroenrat, C., & Rittirat, A. (2021). Leonardite-Derived Biochar Suitability for Effective Sorption of Herbicides. Water, Air, & Soil Pollution, 232(2), 36. DOI

Setter, T. L., Waters, I., Stefanova, K., Munns, R., & Barrett-Lennard, E. G. (2016). Salt tolerance, date of flowering and rain affect the productivity of wheat and barley on rainfed saline land. Field Crops Research, 194, 31–42. DOI

Sun, Y., Wang, M., Mur, L. A. J., Shen, Q., & Guo, S. (2020). Unravelling the roles of nitrogen nutrition in plant disease defences. International Journal of Molecular Sciences, 21(2), 572. DOI

Suntari, R., Retnowati, R., Soemarno, & Munir, M. (2015). Determination of urea-humic acid dosage of Vertisols on the growth and production of rice. AGRIVITA Journal of Agricultural Science, 37(2), 185-192. DOI

Tavares, O. C. H., Santos, L. A., Filho, D. F., Ferreira, L. M., García, A. C., Castro, T. A. V. T., Zonta, E., Pereira, M. G., & Fernandes, M. S. (2021). Response surface modeling of humic acid stimulation of the rice (Oryza sativa L.) root system. Archives of Agronomy and Soil Science, 67(8), 1046–1059. DOI

Wang, J., Wu, J., Lu, J., & Yuan, G. (2020). Effects of leonardite on the coastal saline soil improvement. Chemistry and Ecology, 36(8), 750-765. DOI

Wang, Y., Lu, J., Ren, T., Hussain, S., Guo, C., Wang, S., Cong, R., & Li, X. (2017). Effects of nitrogen and tiller type on grain yield and physiological responses in rice. AoB Plants, 9(2), plx012. DOI

Zhang, J.-L., & Shi, H. (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 115(1), 1–22. DOI

Zhou, W., Lv, T., Yang, Z., Wang, T., Fu, Y., Chen, Y., Hu, B., & Ren, W. (2017). Morphophysiological mechanism of rice yield increase in response to optimized nitrogen management. Scientific Reports, 7(1), 17226. DOI




DOI: http://doi.org/10.17503/agrivita.v45i3.3910

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.