Assessing the Impact of Farming Method in Off-Season Period on the Productivity of Shallot (Allium cepa L.): The Case of Low-Organic Sandy-Clay Soil

Tili Karenina, Dian Novriadhy, Efriandi Efriandi, Desri Yesi, Wenni Tania Defriyanti, Oktaf Juairiyah, Sri Maryani

Abstract


The low productivity of shallot ‘Bima Brebes’ during the rainy season contributed to increasing Indonesia's economic inflation. This study aimed to assess the sustainability of shallot cultivation in low-organic sandy clay soil during the rainy season in South Sumatera, Indonesia. The study observed the farmer group's actual shallot cultivation method. The research findings were expected to explain the phenomenon of shallot production (Cohen f2) at least 0.50 with a maximum error rate (α) of 0.05 and a probability of making the right decisions (1-β) at least 80%. The variables included climate, soil characteristics, cultivation methods carried out by farmers, plant growth, and shallot production. The cultivated field has sufficient porosity to drain water quickly. Still, it tends to make compaction easier. The diameter of the shallot bulb produced fell into category 1 (size over 2.5 cm) by as much as 31.0%, category 2 (between 2.0-2.5 cm) by 38.0%, and category 3 (between 1.5-2.0 cm) by 17.8%. The loss caused by Fusarium disease was 20.29%. Sustainability of low disease-resistance shallot variety cultivation in low-carbon sandy clay soil during rainy seasons was possible by regulating soil humidity rather than fungicide application.

Keywords


Carbon; Fusarium; Resistance; Sandy soil

Full Text:

PDF

References


Bektas, I. & Kusek, M. (2021). Biological control of onion basal rot disease using phosphate solubilising rhizobacteria. Biocontrol Science and Technology, 31(2), 190–205. DOI

BI Sumsel. (2021). Laporan Perekonomian Provinsi Sumatera Selatan Februari 2021. Palembang. PDF

BPS SUMSEL. (2021a). Luas Panen Sayuran (Hektar) 2018-2020, Hortikultura. website

BPS SUMSEL. (2021b). Produksi Sayuran (Kuintal) 2018-2020, Hortikultura. website

Bunbury-Blanchette, A. L. & Walker, A. K. (2019). Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biological Control, 130, 127–135. DOI

Caligiore-Gei, P. F., Ciotti, M. L., Valdez, J. G. & Galmarini, C. R. (2020). Breeding onion for resistance to Fusarium basal rot: comparison of field selection and artificial inoculation. Tropical Plant Pathology, 45(5), 493–498. DOI

Chang, Y., Zhong, W., Liang, J., Zhang, A. & Lin, Y. (2021). Polydimethylsiloxane-polymethacrylate block copolymers containing quaternary ammonium salts against Fusarium oxysporum f. sp. cubense race 4 in soil: Antifungal activities and pot experiments. Reactive and Functional Polymers, 160, 104848. DOI

Cramer, C. S. (2000). Breeding and genetics of Fusarium basal rot resistance in onion. Euphytica, 115(3), 159–166. DOI

Dandapat, P., Nanda, P., Bandyopadhyay, S., Kaushal, A. & Sikdar, A. (2011). Prevalence of Deg Nala disease in eastern India and its reproduction in buffaloes by feeding Fusarium oxysporum infested rice straw. Asian Pacific Journal of Tropical Medicine, 4(1), 54–57. DOI

Dar, A. A., Sharma, S., Mahajan, R., Mushtaq, M., Salathia, A., Ahamad, S., Sharma, J. P. (2020). Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches. Journal of Integrative Agriculture, 19(12), 3013–3024. DOI

Du, X.-J., Peng, X.-J., Zhao, R.-Q., Zhao, W.-G., Dong, W.-L. & Liu, X.-H. (2020). Design, synthesis and antifungal activity of threoninamide carbamate derivatives via pharmacophore model. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 682–691. DOI

Elgharably, A. & Nafady, N. A. (2021). Inoculation with Arbuscular mycorrhizae, Penicillium funiculosum and Fusarium oxysporum enhanced wheat growth and nutrient uptake in the saline soil. Rhizosphere, p. 100345. DOI

Gao, X., Li, K., Ma, Z., Zou, H., Jin, H. & Wang, J. (2020). Cucumber Fusarium wilt resistance induced by intercropping with celery differs from that induced by the cucumber genotype and is related to sulfur-containing allelochemicals. Scientia Horticulturae, 271, p. 109475. DOI

Gonsalves, A. K. & Ferreira, S. A. (1993). Fusarium oxysporum, Crop Knowledge Master. website

Gonzalez, M. F., Magdama, F., Galarza, L., Sosa, D. & Romero, C. (2020). Evaluation of the sensitivity and synergistic effect of Trichoderma reesei and mancozeb to inhibit under in vitro conditions the growth of Fusarium oxysporum. Communicative & Integrative Biology, 13(1), 160–169. DOI

Grilli, E., Carvalho, S. C. P., Chiti, T., Coppola, E., D’Ascoli, R., La Mantia, T., Marzaioli, R., Mastrocicco, M., Pulido, F., Rutigliano, A., Quatrini, P. & Castaldi, S. (2021). Critical range of soil organic carbon in southern Europe lands under desertification risk. Journal of Environmental Management, 287, p. 112285. DOI

Gxasheka, M., Wang, J., Gunya, B., Mbanjwa, V., Tyasi, T. L., Dlamini, P. & Gao, J. (2020). In vitro effect of some commercial fungicides on mycelial growth of Fusarium species causing maize ear rot disease in China. Archives of Phytopathology and Plant Protection, pp. 1–13. DOI

Hadiwiyono, H., Sari, K. & Poromarto, S. H. (2020). Yields losses caused by basal plate rot (Fusarium oxysporum f.sp. cepae) in some shallot varieties, Caraka Tani. Journal of Sustainable Agriculture, 35(2), 250. DOI: DOI

Idhan, A., Syam’un, E. & Riyadi, M. 2023. Production of Botanical Seeds and Shallot Boobs with Vernalization and Giberrylin (GA3) Treatment in Highland Areas, Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 12(1), 201-211. DOI

Jahedi, A., Safaie, N. & Goltapeh, E. M. (2019). Fusarium avenaceum and Fusarium crookwellens cause onion basal rot in Iran. Archives of Phytopathology and Plant Protection, 52(9–10), 953–968. DOI

Kementan. (1984). Bima Brebes, Sistem Informasi Database Varietas Tanaman. website

Khan, M. A., Khan, S. A., Waheed, U., Raheel, M., Khan, Z., Alrefaei, A. F. & Alrefaei, F., Alkhamis, H. H. (2021). Morphological and genetic characterization of Fusarium oxysporum and its management using weed extracts in cotton. Journal of King Saud University - Science, 33(2), 101299. DOI

Lasmini, S. A., Idham, I., Haji Nasir, B., Pasaru, F., Lakani, I. & Khasanah, N. 2022. Agronomic performance of shallot (Allium cepa L. Var. Aggregatum) under different mulch and organic fertilizers, Tropical and Subtropical Agroecosystems, 25(2), 1-9. DOI

Maharshi, A., Rashid, M. M., Teli, B., Yadav, S. K., Singh, D. P. & Sarma, B. K. (2021). Salt stress alters pathogenic behaviour of Fusarium oxysporum f. sp. ciceris and contributes to severity in chickpea wilt incidence. Physiological and Molecular Plant Pathology, 113, p. 101602. DOI

Manstretta, V. & Rossi, V. (2016). Effects of temperature and moisture on development of Fusarium graminearum Perithecia in maize stalk residues. Applied and Environmental Microbiology. Edited by A. A. Brakhage, 82(1), 184–191. DOI

MCGA. (2021). Monthly precipitation, Climate Analysis. Meteorological, Climatological, and Geophysical Agency. Available at: website (Accessed: 3 March 2021).

McLean, K. L., Hunt, J. S., Stewart, A., Wite, D., Porter, I. J. & Villalta, O. (2012). Compatibility of a Trichoderma atroviride biocontrol agent with management practices of Allium crops. Crop Protection, 33, 94–100. DOI

NSA. (2013). SNI-3159 Bawang merah (Allium cepa var. ascalonicum). Indonesia: National Standardization Agency. website

Potard, K., Monard, C., Le Garrec, J.-L., Caudal, J.-P., Le Bris, N. & Binet, F. (2017). Organic amendment practices as possible drivers of biogenic Volatile Organic Compounds emitted by soils in agrosystems. Agriculture, Ecosystems & Environment, 250, 25–36. DOI

Punja, Z. K. (2021). Epidemiology of Fusarium oxysporum causing root and crown rot of cannabis (Cannabis sativa L., marijuana) plants in commercial greenhouse production. Canadian Journal of Plant Pathology, 43(2), 216–235. DOI

Ramsden, S. J., Wilson, P. & Phrommarat, B. (2017). Integrating economic and environmental impact analysis: The case of rice-based farming in Northern Thailand. Agricultural Systems, 157, 1–10. DOI

Riaz, M., Mahmood, R., Khan, S. N., Haider, M. S. & Ramzan, S. (2020). Onion tip burn: Significance, and response to amount and form of nitrogen. Scientia Horticulturae, 261, p. 108773. DOI

Sampaio, A. M., Rubiales, D. & Vaz Patto, M. C. (2021). Grass pea and pea phylogenetic relatedness reflected at Fusarium oxysporum host range. Crop Protection, 141, p. 105495. DOI

Shershneva, A. M., Murueva, A. V., Zhila, N. O. & Volova, T. G. (2019). Antifungal activity of P3HB microparticles containing tebuconazole. Journal of Environmental Science and Health, Part B, 54(3), pp. 196–204. DOI

Shi, X., Qiao, K., Li, B. & Zhang, S. (2019). Integrated management of Meloidogyne incognita and Fusarium oxysporum in cucumber by combined application of abamectin and fludioxonil. Crop Protection, 126, p. 104922. DOI

Sintayehu, A., Sakhuja, P. K., Fininsa, C. & Ahmed, S. (2011). Management of Fusarium basal rot (Fusarium oxysporum f. sp. cepae) on shallot through fungicidal bulb treatment. Crop Protection, 30(5), 560–565. DOI

Souza, M., Müller Júnior, V., Kurtz, C., dos Santos Ventura, B., Lourenzi, C. R., Lazzari, C. J. R., Ferreira, G. W., Brunetto, G., Loss, A. & Cormin, J. (2021). Soil chemical properties and yield of onion crops grown for eight years under no-tillage system with cover crops. Soil and Tillage Research, 208, p. 104897. DOI

Statistics Indonesia. (2019). Horticultural Statistics. Jakarta, Indonesia. website

Sun, R.-L., Jing, Y.-L., de Boer, W., Guo, R.-J. & Li, S.-D. (2021). Dominant hyphae-associated bacteria of Fusarium oxysporum f. sp. cucumerinum in different cropping systems and insight into their functions. Applied Soil Ecology, 165, p. 103977. DOI

Sutardi, Kristamtini, Purwaningsih, H., Widyayanti, S., Arianti, F. D., Pertiwi, M. D., Triastono, J., Praptana, R. H., Malik, A., Cempaka, I. G., Yusuf, Yufdy, M.P., Anda, M. & Wihardjaka, A. (2022). Nutrient Management of Shallot Farming in Sandy Loam Soil in Tegalrejo, Gunungkidul, Indonesia, Sustainability (Switzerland), 14(19). doi: DOI

Tandi, O. G., Salamba, H. N., Lintang, M. & Mongan, B. (2021). Agronomic characteristics and shallot production in Tomohon city, North Sulawesi, E3S Web of Conferences, 306, pp. 1–6. doi: DOI

Taylor, A., Teakle, G. R., Walley, P. G., Finch-Savage, W. E., Jackson, A. C., Jones, J. E., Hand, P., Thomas, B., Havey, M. J., Pink, D. A. C. & Clarkson, J. P. (2019). Assembly and characterisation of a unique onion diversity set identifies resistance to Fusarium basal rot and improved seedling vigour. Theoretical and Applied Genetics, 132(12), pp. 3245–3264. DOI

Tirado-Ramirez, M. A., López-Urquídez, G. A., Amarillas-Bueno, L. A., Retes-Manjarrez, J. E., Vega-Gutiérrez, T. A., López Avendaño, J. E. & Lopez-Orona, C. A. (2021). Identification and virulence of Fusarium falciforme and Fusarium brachygibbosum as causal agents of basal rot on onion in Mexico, Canadian Journal of Plant Pathology, pp. 1–12. DOI

Wakchaure, G. C., Minhas, P. S., Kumar, S., Khapte, P. S., Meena, K. K., Rane, J., Pathak. (2021). Quantification of water stress impacts on canopy traits, yield, quality and water productivity of onion (Allium cepa L.) cultivars in a shallow basaltic soil of water scarce zone. Agricultural Water Management, 249, p. 106824. DOI

Wang, A., Islam, M. N., Johansen, A., Haapalainen, M., Latvala, S. & Edelenbos, M. (2019). Pathogenic Fusarium oxysporum f. sp. cepae growing inside onion bulbs emits volatile organic compounds that correlate with the extent of infection. Postharvest Biology and Technology, 152, 19–28. DOI




DOI: http://doi.org/10.17503/agrivita.v41i0.3701

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.