Automatic Differentiating of Postharvest Banana Fruits with High Traits Using Imagery Data

Candra Dewi, Wayan Firdaus Mahmudy, Solimun Solimun, Endang Arisoesilaningsih

Abstract


Visually differentiating banana cultivar with high similarity in shape, color and peel texture requires skill and experience during harvesting to reduce mistake on identifying cultivar. This study aims to identify automatically some similar banana cultivars using banana finger imagery and computer vision. The identification process was carried out to distinguish two groups of bananas with high similarities, namely group 1 (Ambon, Hijau, Goroho) and group 2 (Barlin, Mas). The test was conducted on the pair of datasets of unripe Ambon-Hijau-Goroho, ripe Hijau-Goroho, ripe and unripe Barlin-Mas. Testing was done to determine the performance of identification and to find out the most effective characteristics that could be used as cultivar identification. Results of classification using extreme learning machine (ELM) showed that texture features extracted from local binary pattern (LBP) could accurately distinguish unripe Ambon-Goroho, unripe Goroho-Hijau, ripe Goroho-Hijau with 100% accuracy. While unripe Ambon-Hijau, unripe Barlin-Mas and ripe Barlin-Mas could be optimally distinguished using a combination of shape and peel texture features with accuracy of 93.39%, 89.68%, 99.31% respectively. This result indicated that the proposed method could be used as an alternative of automatic banana sortation during post-harvest. The use of shape and peel texture features had shown effectively differentiating these high similarity banana cultivars.

Keywords


Banana Finger; Classification; High Similarity; Shape Feature; Texture Feature

Full Text:

PDF

References


Begum, N., & Hazarika, M. K. (2022). Maturity detection of tomatoes using transfer learning. Measurement: Food, 7, 100038. DOI

Bora, G. C., Lin, D., Bhattacharya, P., Bali, S. K., & Pathak, R. (2015). Application of bio-image analysis for classification of different ripening stages of banana. Journal of Agricultural Science, 7(2), 152-160. DOI

Chorowski, J., Wang, J., & Zurada, J. M. (2014). Review and performance comparison of SVM- and ELM-based classifiers. Neurocomputing, 128, 507–516. DOI

Deng, X., Liu, Q., Deng, Y., & Mahadevan, S. (2016). An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences, 340–341, 250–261. DOI

Dewi, C., Arisoesilaningsih, E., Mahmudy, W. F., & Solimun. (2022). Identifying of unripe Ambon and Hijau banana fruits using computer vision and extreme learning machine classifier. IOP Conference Series: Earth and Environmental Science, 951(1), 012031. DOI

Dewi, C., Mahmudy, W. F., Arifando, R., Arbawa, Y. K., & Ahmadie, B. L. (2020). Improve performance of extreme learning machine in classification of patchouli varieties with imbalanced class. Paper presented at SIET '20: Proceedings of the 5th International Conference on Sustainable Information Engineering and Technology, November 2020 (pp. 16-22). New York: Association for Computing Machinery. DOI

Ding, S., Xu, X., & Nie, R. (2014). Extreme learning machine and its applications. Neural Computing and Applications, 25(3–4), 549–556. DOI

Dittakan, K., Theera-Ampornpunt, N., Witthayarat, W., Hinnoy, S., Klaiwan, S., & Pratheep, T. (2017). Banana cultivar classification using scale invariant shape analysis. Paper presented at Proceeding of 2017 2nd International Conference on Information Technology, INCIT 2017 (pp. 1–6). Nakhonpathom, Thailand: IEEE. DOI

Dwivany, F. (2018). Pentingnya data pisang Indonesia. DOI

Ekesa, B., Mirroir, C., Blomme, G., Van Den Bergh, I., & Davey, M. W. (2013). Retention of provitamin a carotenoids during postharvest ripening and processing of three popular musa cultivars in South-Western Uganda. Acta Horticulturae, 986, 319–330. DOI

Fauziah, Trimanto, & Hapsari, L. (2017). Morphology and molecular identification of local cultivars of pisang raja (Musa spp.) from Yogyakarta, Central Java and East Java, Indonesia. Paper presented at Prosiding International Conference Celebrating Bicentenary of Bogor Botanic Gardens and the Golden Year of LIPI, 18-20 May 2017. Lembaga Ilmu Pengetahuan Indonesia. Retrieved from website

Hapsari, L., Lestari, D. A., & Masrum, A. (2015). Album koleksi pisang Kebun Raya Purwodadi seri 1: 2010-2015. Unit Pelaksana Teknis Balai Konservasi Tumbuhan Kebun Raya Purwodadi-LIPI. Retrieved from website

Hou, J. C., Hu, Y. H., Hou, L. X., Guo, K. Q., & Satake, T. (2015). Classification of ripening stages of bananas based on support vector machine. International Journal of Agricultural and Biological Engineering, 8(6), 99–103. DOI

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. Paper presented at 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) (pp. 985–990). Budapest, Hungary: IEEE. DOI

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501. DOI

Huang, K.-Y. (2012). Detection and classification of areca nuts with machine vision. Computers and Mathematics with Applications, 64(5), 739–746. DOI

Iklima, C. P., Nasir, M., & Hidayat, H. T. (2017). Klasifikasi jenis pisang menggunakan metode K-Nearest Neighbor (KNN). Jurnal Teknologi Rekayasa Informasi dan Komputer, 1(1), 11–14. Retrieved from website

Kaewchote, J., Janyong, S., & Limprasert, W. (2018). Image recognition method using Local Binary Pattern and the Random forest classifier to count post larvae shrimp. Agriculture and Natural Resources, 52(4), 371–376. DOI

Kaplan, K., Kaya, Y., Kuncan, M., & Ertunç, H. M. (2020). Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Medical Hypotheses, 139, 109696. DOI

Le, T.-T., Lin, C.-Y., & Piedad, E. Jr. (2019). Deep learning for noninvasive classification of clustered horticultural crops – A case for banana fruit tiers. Postharvest Biology and Technology, 156, 110922. DOI

Li, H., Lee, W. S., & Wang, K. (2014). Identifying blueberry fruit of different growth stages using natural outdoor color images. Computers and Electronics in Agriculture, 106, 91–101. DOI

Mahale, V. H., Ali, M. M. H., Yannawar, P. L., & Gaikwad, A. T. (2017). Image inconsistency detection using Local Binary Pattern (LBP). Procedia Computer Science, 115, 501–508. DOI

Mohd Ali, M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2022). Quality prediction of different pineapple (Ananas comosus) varieties during storage using infrared thermal imaging technique. Food Control, 138, 108988. DOI

Mohi-Alden, K., Omid, M., Firouz, M. S., & Nasiri, A. (2022). A machine vision-intelligent modelling based technique for in-line bell pepper sorting. Information Processing in Agriculture, In Press. DOI

Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59. DOI

Okorie, D. O., Eleazu, C. O., & Nwosu, P. (2015). Nutrient and heavy metal composition of plantain (Musa paradisiaca) and banana (Musa paradisiaca) peels. Journal of Nutrition & Food Sciences, 5(3), 1–4. DOI

Pahikkala, T., Kari, K., Mattila, H., Lepistö, A., Teuhola, J., Nevalainen, O. S., & Tyystjärvi, E. (2015). Classification of plant species from images of overlapping leaves. Computers and Electronics in Agriculture, 118, 186–192. DOI

Piedad, E. Jr, Larada, J. I., Pojas, G. J., & Ferrer, L. V. V. (2018). Postharvest classification of banana (Musa acuminata) using tier-based machine learning. Postharvest Biology and Technology, 145, 93–100. DOI

Purwadaria, H. K. (2006). Issues and solutions of fresh fruit export in Indonesia. Paper presented at International Seminar on Enhancing Competitiveness of Asian Fruits, Bangkok,Thailand, 18-19 May 2006 (pp. 24–33). Retrieved from PDF

Sanjaya, H. K., & Wijaya, N. (2020). Klasifikasi jenis pisang menggunakan Support Vector Machine dengan fitur GLCM dan HOG. Indonesian Journal of Computer Science, 9(2), 129–143. Retrieved from website

Santoyo-Mora, M., Sancen-Plaza, A., Espinosa-Calderon, A., Barranco-Gutierrez, A. I., & Prado-Olivarez, J. (2019). Nondestructive quantification of the ripening process in banana (Musa AAB Simmonds) using multispectral imaging. Journal of Sensors, 2019, 6742896. DOI

Simmonds, N. W. (1966). Bananas. London: Longmans. Retrieved from website

Simmonds, N. W., & Shepherd, K. (1955). The taxonomy and origins of the cultivated bananas. Botanical Journal of the Linnean Society, 55(359), 302–312. DOI

Singh, K., Gupta, I., & Gupta, S. (2010). SVM-BDT PNN and fourier moment technique for classification of leaf shape. International Journal of Signal Processing Image Processing and Pattern Recognition, 3(4), 67–78. Retrieved from website

Srividhya, V., Sujatha, K., & Ponmagal, R. S. (2016). Ethylene gas measurement for ripening of fruits using image processing. Indian Journal of Science and Technology, 9(31), 1-7. DOI

Wang, X.-F., Du, J.-X., & Zhang, G.-J. (2005). Recognition of leaf images based on shape features using a hypersphere classifier. In D. S. Huang, X. P. Zhang, G. B. Huang (Eds.), Advances in Intelligent Computing (ICIC 2005), Lecture Notes in Computer Science, 3644(PART I), 87–96. DOI

Yana, Y. E., & Nafi’iyah, N. (2021). Klasifikasi jenis pisang berdasarkan fitur warna, tekstur, bentuk citra menggunakan SVM dan KNN. RESEARCH : Journal of Computer, Information System & Technology Management, 4(1), 28. DOI

Zhang, L., Weckler, P., Wang, N., Xiao, D., & Chai, X. (2016). Individual leaf identification from horticultural crop images based on the leaf skeleton. Computers and Electronics in Agriculture, 127, 184–196. DOI

Zhang, Y., Wang, S., Ji, G., & Phillips, P. (2014). Fruit classification using computer vision and feedforward neural network. Journal of Food Engineering, 143, 167–177. DOI

Zulkifli, N., Hashim, N., Abdan, K., & Hanafi, M. (2019). Application of laser-induced backscattering imaging for predicting and classifying ripening stages of “Berangan” bananas. Computers and Electronics in Agriculture, 160, 100–107. DOI




DOI: http://doi.org/10.17503/agrivita.v44i2.3648

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.