Automatic Differentiating of Postharvest Banana Fruits with High Traits Using Imagery Data
Abstract
Keywords
Full Text:
PDFReferences
Begum, N., & Hazarika, M. K. (2022). Maturity detection of tomatoes using transfer learning. Measurement: Food, 7, 100038. DOI
Bora, G. C., Lin, D., Bhattacharya, P., Bali, S. K., & Pathak, R. (2015). Application of bio-image analysis for classification of different ripening stages of banana. Journal of Agricultural Science, 7(2), 152-160. DOI
Chorowski, J., Wang, J., & Zurada, J. M. (2014). Review and performance comparison of SVM- and ELM-based classifiers. Neurocomputing, 128, 507–516. DOI
Deng, X., Liu, Q., Deng, Y., & Mahadevan, S. (2016). An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences, 340–341, 250–261. DOI
Dewi, C., Arisoesilaningsih, E., Mahmudy, W. F., & Solimun. (2022). Identifying of unripe Ambon and Hijau banana fruits using computer vision and extreme learning machine classifier. IOP Conference Series: Earth and Environmental Science, 951(1), 012031. DOI
Dewi, C., Mahmudy, W. F., Arifando, R., Arbawa, Y. K., & Ahmadie, B. L. (2020). Improve performance of extreme learning machine in classification of patchouli varieties with imbalanced class. Paper presented at SIET '20: Proceedings of the 5th International Conference on Sustainable Information Engineering and Technology, November 2020 (pp. 16-22). New York: Association for Computing Machinery. DOI
Ding, S., Xu, X., & Nie, R. (2014). Extreme learning machine and its applications. Neural Computing and Applications, 25(3–4), 549–556. DOI
Dittakan, K., Theera-Ampornpunt, N., Witthayarat, W., Hinnoy, S., Klaiwan, S., & Pratheep, T. (2017). Banana cultivar classification using scale invariant shape analysis. Paper presented at Proceeding of 2017 2nd International Conference on Information Technology, INCIT 2017 (pp. 1–6). Nakhonpathom, Thailand: IEEE. DOI
Dwivany, F. (2018). Pentingnya data pisang Indonesia. DOI
Ekesa, B., Mirroir, C., Blomme, G., Van Den Bergh, I., & Davey, M. W. (2013). Retention of provitamin a carotenoids during postharvest ripening and processing of three popular musa cultivars in South-Western Uganda. Acta Horticulturae, 986, 319–330. DOI
Fauziah, Trimanto, & Hapsari, L. (2017). Morphology and molecular identification of local cultivars of pisang raja (Musa spp.) from Yogyakarta, Central Java and East Java, Indonesia. Paper presented at Prosiding International Conference Celebrating Bicentenary of Bogor Botanic Gardens and the Golden Year of LIPI, 18-20 May 2017. Lembaga Ilmu Pengetahuan Indonesia. Retrieved from website
Hapsari, L., Lestari, D. A., & Masrum, A. (2015). Album koleksi pisang Kebun Raya Purwodadi seri 1: 2010-2015. Unit Pelaksana Teknis Balai Konservasi Tumbuhan Kebun Raya Purwodadi-LIPI. Retrieved from website
Hou, J. C., Hu, Y. H., Hou, L. X., Guo, K. Q., & Satake, T. (2015). Classification of ripening stages of bananas based on support vector machine. International Journal of Agricultural and Biological Engineering, 8(6), 99–103. DOI
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. Paper presented at 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) (pp. 985–990). Budapest, Hungary: IEEE. DOI
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501. DOI
Huang, K.-Y. (2012). Detection and classification of areca nuts with machine vision. Computers and Mathematics with Applications, 64(5), 739–746. DOI
Iklima, C. P., Nasir, M., & Hidayat, H. T. (2017). Klasifikasi jenis pisang menggunakan metode K-Nearest Neighbor (KNN). Jurnal Teknologi Rekayasa Informasi dan Komputer, 1(1), 11–14. Retrieved from website
Kaewchote, J., Janyong, S., & Limprasert, W. (2018). Image recognition method using Local Binary Pattern and the Random forest classifier to count post larvae shrimp. Agriculture and Natural Resources, 52(4), 371–376. DOI
Kaplan, K., Kaya, Y., Kuncan, M., & Ertunç, H. M. (2020). Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Medical Hypotheses, 139, 109696. DOI
Le, T.-T., Lin, C.-Y., & Piedad, E. Jr. (2019). Deep learning for noninvasive classification of clustered horticultural crops – A case for banana fruit tiers. Postharvest Biology and Technology, 156, 110922. DOI
Li, H., Lee, W. S., & Wang, K. (2014). Identifying blueberry fruit of different growth stages using natural outdoor color images. Computers and Electronics in Agriculture, 106, 91–101. DOI
Mahale, V. H., Ali, M. M. H., Yannawar, P. L., & Gaikwad, A. T. (2017). Image inconsistency detection using Local Binary Pattern (LBP). Procedia Computer Science, 115, 501–508. DOI
Mohd Ali, M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2022). Quality prediction of different pineapple (Ananas comosus) varieties during storage using infrared thermal imaging technique. Food Control, 138, 108988. DOI
Mohi-Alden, K., Omid, M., Firouz, M. S., & Nasiri, A. (2022). A machine vision-intelligent modelling based technique for in-line bell pepper sorting. Information Processing in Agriculture, In Press. DOI
Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59. DOI
Okorie, D. O., Eleazu, C. O., & Nwosu, P. (2015). Nutrient and heavy metal composition of plantain (Musa paradisiaca) and banana (Musa paradisiaca) peels. Journal of Nutrition & Food Sciences, 5(3), 1–4. DOI
Pahikkala, T., Kari, K., Mattila, H., Lepistö, A., Teuhola, J., Nevalainen, O. S., & Tyystjärvi, E. (2015). Classification of plant species from images of overlapping leaves. Computers and Electronics in Agriculture, 118, 186–192. DOI
Piedad, E. Jr, Larada, J. I., Pojas, G. J., & Ferrer, L. V. V. (2018). Postharvest classification of banana (Musa acuminata) using tier-based machine learning. Postharvest Biology and Technology, 145, 93–100. DOI
Purwadaria, H. K. (2006). Issues and solutions of fresh fruit export in Indonesia. Paper presented at International Seminar on Enhancing Competitiveness of Asian Fruits, Bangkok,Thailand, 18-19 May 2006 (pp. 24–33). Retrieved from PDF
Sanjaya, H. K., & Wijaya, N. (2020). Klasifikasi jenis pisang menggunakan Support Vector Machine dengan fitur GLCM dan HOG. Indonesian Journal of Computer Science, 9(2), 129–143. Retrieved from website
Santoyo-Mora, M., Sancen-Plaza, A., Espinosa-Calderon, A., Barranco-Gutierrez, A. I., & Prado-Olivarez, J. (2019). Nondestructive quantification of the ripening process in banana (Musa AAB Simmonds) using multispectral imaging. Journal of Sensors, 2019, 6742896. DOI
Simmonds, N. W. (1966). Bananas. London: Longmans. Retrieved from website
Simmonds, N. W., & Shepherd, K. (1955). The taxonomy and origins of the cultivated bananas. Botanical Journal of the Linnean Society, 55(359), 302–312. DOI
Singh, K., Gupta, I., & Gupta, S. (2010). SVM-BDT PNN and fourier moment technique for classification of leaf shape. International Journal of Signal Processing Image Processing and Pattern Recognition, 3(4), 67–78. Retrieved from website
Srividhya, V., Sujatha, K., & Ponmagal, R. S. (2016). Ethylene gas measurement for ripening of fruits using image processing. Indian Journal of Science and Technology, 9(31), 1-7. DOI
Wang, X.-F., Du, J.-X., & Zhang, G.-J. (2005). Recognition of leaf images based on shape features using a hypersphere classifier. In D. S. Huang, X. P. Zhang, G. B. Huang (Eds.), Advances in Intelligent Computing (ICIC 2005), Lecture Notes in Computer Science, 3644(PART I), 87–96. DOI
Yana, Y. E., & Nafi’iyah, N. (2021). Klasifikasi jenis pisang berdasarkan fitur warna, tekstur, bentuk citra menggunakan SVM dan KNN. RESEARCH : Journal of Computer, Information System & Technology Management, 4(1), 28. DOI
Zhang, L., Weckler, P., Wang, N., Xiao, D., & Chai, X. (2016). Individual leaf identification from horticultural crop images based on the leaf skeleton. Computers and Electronics in Agriculture, 127, 184–196. DOI
Zhang, Y., Wang, S., Ji, G., & Phillips, P. (2014). Fruit classification using computer vision and feedforward neural network. Journal of Food Engineering, 143, 167–177. DOI
Zulkifli, N., Hashim, N., Abdan, K., & Hanafi, M. (2019). Application of laser-induced backscattering imaging for predicting and classifying ripening stages of “Berangan” bananas. Computers and Electronics in Agriculture, 160, 100–107. DOI
DOI: http://doi.org/10.17503/agrivita.v44i2.3648
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.