Katokkon Pepper (Capsicum chinense Jacq.) Ploidy Determination by Morphological Characteristic and Flow Cytometry Analysis

Rinaldi Sjahril, Muh. Riadi, Ifayanti Ridwan Saleh, Novitasari Novitasari, Ernitha A. Galla, Kasmiati Kasmiati, A. R. Trisnawaty, Nurhaya J. Panga

Abstract


Katokkon pepper plant is originated from Toraja, South Sulawesi, Indonesia. This endemic pepper variety has unique hot and spicy characters with a distinctive bell pepper aroma, and aesthetic shape similar to paprika, but with smaller size. This research was conducted to identify ploidy level and plant morphology of colchicine induced Katokkon pepper at Laboratory of Plant Reproduction Bioscience and Biotechnology, Department of Agronomy, Faculty of Agriculture, Universitas Hasanuddin and experimental field of Agricultural Extension System Vocational High School Santo Paulus Tana Toraja (S 03°04’177” E 119°51’526”). Two weeks old seedlings were immersed for 4.5 hours in colchicine concentration (0.00%, 0.0125%, 0.025%, 0.05% and 0.10%). Flow cytometry analysis was carried out using Partec Cy-Flow SpaceTM. Result showed that colchicine concentration (0.025%, 0.05% and 0.1%) produced mixoploid plants with two set of chromosomes (2n=24, 4n=48). This study also found morphological differences between mixoploids plants induced by 0.025%, 0.05% and 0.1% colchicine and diploid plants (0% and 0.0125% colchicine) during first two juvenile leaves phase. However, this difference did not occur further, and eventually morphology of adult mixoploid plant was not significantly different from control (diploid), which concurred to grading mixoploid grade 2. The mixoploid plants analyzed consist of higher diploids cells than tetraploid.


Keywords


Colchicine; Flow Cytometry; Katokkon Pepper; Toraja

Full Text:

PDF

References


Amaliah, N. (2018). Penentuan Kadar Capsaicin menggunakan metode kromatografi lapis tipis (klt) pada cabe katokkon. Jurnal Sains Terapan, 4(1), 49–56.

Amanah, H. A., Arumingtyas, E. L., & Indriyani, S. (2016). Chromosome analysis of cayenne pepper (Capsicum frustescens L.) in colchicine induced mutation. Journal of Applied Horticulture, 18(3), 217–220. DOI

Amiri, S., Kazemitabaar, S. K., Ranjbar, G., & Azadbakht, M. (2010). The effect of trifluralin and colchicine treatments on morphological characteristics of jimsonweed (Datura stramonium L.). Trakia Journal of Sciences, 8(4), 47–61. PDF

Azmi, T. K. K., Sukma, D., Aziz, S. A., & Syukur, M. (2016). Polyploidy induction of moth orchid (phalaenopsis amabilis (l.) blume) by colchicine treatment on pollinated flowers. Journal of Agricultural Sciences, 11(2), 62. DOI

Chaikam, V., Molenaar, W., Melchinger, A. E., & Boddupalli, P. M. (2019). Doubled haploid technology for line development in maize: technical advances and prospects. Theoretical and Applied Genetics, 132(12), 3227–3243. DOI

Chen, L. P., Wang, Y. J., & Zhao, M. (2006). In vitro induction and characterization of tetraploid Lychnis senno Siebold et Zucc. HortScience, 41(3), 759–761. DOI

Dart, S., Kron, P., & Mable, B. K. (2004). Characterizing polyploidy in Arabidopsis lyrata using chromosome counts and flow cytometry. Canadian Journal of Botany, 82(2), 185–197. DOI

El-Naby, Z. M. A., Mohamed, N. A., Radwan, K. H., & El-Khishin, D. A. (2012). Colchicine induction of polyploidy in Egyptian clover genotypes. Journal of American Science, 8, 221–227. DOI

Eng, W.-H., & Ho, W.-S. (2019). Polyploidization using colchicine in horticultural plants: a review. Scientia Horticulturae, 246, 604–617. DOI

Flowrenzhy, D., & Harijati, N. (2017). Pertumbuhan dan produktivitas tanaman cabai katokkon (Capsicum chinense Jacq.) di ketinggian 600 meter dan 1.200 meter di atas permukaan laut. Biotropika, 5(2), 44–53. DOI

Gu, X.F., Yang, A.F., Meng, H, & Zhang, J.R. (2005). In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. cv. Zhanhua. Plant Cell Reports 24, 671–676. DOI

Guo, X. (2012). Polyploidy levels of Chinese large-flower chrysanthemum determined by flow cytometry. African Journal of Biotechnology, 11(31), 7789–7794. DOI

He, M., Gao, W., Gao, Y., Liu, Y., Yang, X., Jiao, H., & Zhou, Y. (2016). Polyploidy induced by colchicine in Dendranthema indicum var. aromaticum, a scented chrysanthemum. Eur. J. Hortic. Sci., 81(4), 219-226. DOI

Kashtwari, M., Jan, S., Wani, A. A., & Dhar, M. K. (2021). Induction of polyploidy in saffron (Crocus sativus L.) using colchicine. Journal of Crop Improvement, 1–27. DOI

Kasmiati, Sjahril, R., Riadi, M., Ridwan, I., & A.R., Trisnawaty. (2020). The effects of colchicine concentration and soaking time on formation of leaves and roots of katokkon (Capsicum chinense Jacq.) in vitro. IOP Conference Series: Earth and Environmental Science, 486. DOI

Koutoulis, A., Roy, A. T., & Price, A. (2005). DNA ploidy level of colchicine-treated hops (Humulus lupulus L.). Scientia Horticulturae, 105(2), 263–268. DOI

Kulkarni, M., & Borse, T. (2010). Induced polyploidy with gigas expression for root traits in Capsicum annuum (L.). Plant Breeding, 129(4), 461–464. DOI

Kushwah, K. S., Verma, R. C., Patel, S., & Jain, N. K. (2018). Colchicine induced polyploidy in Chrysanthemum carinatum L. J Phylogenetics Evol Biol, 6(193). DOI

Limera, C., Wang, K., Xu, L., Wang, Y., Zhu, X., Feng, H., Sha, Y., Gong, Y., & Liu, L. (2016). Induction of autotetraploidy using colchicine and its identification in radish (Raphanus sativus L.). The Journal of Horticultural Science and Biotechnology, 91(1), 63–70. DOI

Manzoor, A., Ahmad, T., Bashir, M. A., Baig, M. M. Q., Quresh, A. A., Shah, M. K. N., & Hafiz, I. A. (2018). Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus ‘White Prosperity. Folia Horticulturae, 30(2), 307–319. DOI

Marano, A., Tandirerung, W. Y., & Garatsia. (2017). Respon tanaman cabai besar (Capsicum sp) Varietas lokal terhadap pemberian berbagai dosis bokashi azolla. AgroSainT UKI Toraja, 8(2), 111–117. website

Maru, B., Parihar, A., Kulshrestha, K., & Vaja, M. (2021). Induction of polyploidy through colchicine in cotton (Gossypium herbaceum) and its conformity by cytology and flow cytometry analyses. Journal of Genetics, 100(2), 1–10. DOI

Murni, D. (2010). Pengaruh perlakuan kolkisin terhdap jumlah kromosom dan fenotip tanaman cabe keriting (Capsicum annum L.). Jurnal Agroekoteknologi, 2(1), 43–48. website

Nagat, E., Kamla, B., & Hoda, K. (2020). Phenotypic and molecular characterization of polyploidy Vicia faba induced by colchicine. GSC Biological and Pharmaceutical Sciences, 11(03), 235–243. DOI

Némorin, A., David, J., Maledon, E., Nudol, E., Dalon, J., & Arnau, G. (2013). Microsatellite and flow cytometry analysis to help understand the origin of Dioscorea alata polyploids. Annals of Botany, 112(5), 811–819. DOI

Niazian, M., & Nalousi, A. M. (2020). Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell, Tissue and Organ Culture (PCTOC), 142, 447–469. DOI

Noori, S. A. S., Norouzi, M., Karimzadeh, G., Shirkool, K., & Niazian, M. (2017). Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell, Tissue and Organ Culture (Pctoc), 130(3), 543–551. DOI

Parsons, J. L., Martin, S. L., James, T., Golenia, G., Boudko, E. A., & Hepworth, S. R. (2019). Polyploidization for the genetic improvement of Cannabis sativa. Frontiers in Plant Science, 10, 476. DOI

Ranney, T. G. (2006). Polyploidy: from evolution to new plant development. Combined Proceedings International Plant Propagators’ Societaty, 56, 137–142.

Roy, A., Leggett, G., & Koutoulis, A. (2001). In vitro tetraploid induction and generation of tetraploids from mixoploids in hop (Humulus lupulus L.). Plant Cell Reports, 20(6), 489–495. DOI

Sajjad, Y., Jaskani, M. J., Mehmood, A., Ahmad, I., & Abbas, H. (2013). Effect of colchicine on in vitro polyploidy induction in African marigold (Tagetes erecta). Pakistan Journal of Botany, 45(3), 1255–1258. PDF

Salma, U., Kundu, S., & Mandal, N. (2017). Artificial polyploidy in medicinal plants: advancement in the last two decades and impending prospects. Journal of Crop Science and Biotechnology, 20(1), 9–19. DOI

Sattler, M. C., Carvalho, C. R., & Clarindo, W. R. (2016). The polyploidy and its key role in plant breeding. Planta, 243(2), 281–296. DOI

Sjahril, R., Kasmiati, Riadi, M., Ridwan, I., Jamaluddin, I., & Panga, N. J. (2021). Flow cytometry analysis on colchicine induced polyploid of Katokkon peppers (Capsicum chinense Jacq.). IOP Conference Series: Earth and Environmental Science, 807(3), 032024. DOI

Sousa, W. R. do N., Lopes, A. C. de A., de Carvalho, R., Gomes, R. L. F., & Peron, A. P. (2015). Caracterização cariotípica de acessos de Capsicum sp. Acta Scientiarum - Agronomy, 37(2), 147–153. DOI

Souza, S. A. M., Martins, K. C., & Pereira, T. N. S. (2011). Polimorfismo cromossômico em Capsicum chinense Jacq. Ciencia Rural, Santa Maria, 41(10), 1777–1783. DOI

Stuessy, T., & Weiss-Schneeweiss, H. (2019). Commentary What drives polyploidization in. New Phytologist, 223(4), 2039-2053. DOI

Tammu, R. M., Nuringtyas, T. R., & Daryono, B. S. (2021). Colchicine effects on the ploidy level and morphological characters of Katokkon pepper (Capsicum annuum L.) from North Toraja, Indonesia. Journal of Genetic Engineering and Biotechnology, 19(1). DOI

Wätjen, A., Huyskens-Keil, S., & Stöber, S. (2021). Nutritional Assessment of Indonesian Chilli Landraces (Capsicum chinense Jacq.). IOP Conference Series: Earth and Environmental Science, 748(1). DOI

Zeng, R.-Z., Zhu, J., Xu, S.-Y., Du, G.-H., Guo, H.-R., Chen, J., Xie, L. (2020). Unreduced male gamete formation in Cymbidium and its use for developing sexual polyploid cultivars. Frontiers in Plant Science, 11, 558. DOI

Zhang, K., Wang, X., & Cheng, F. (2019). Plant polyploidy: origin, evolution, and its influence on crop domestication. Horticultural Plant Journal, 5(6), 231–239. DOI

Zhou, Hw., Zeng, Wd., & Yan, Hb. (2017). In vitro induction of tetraploids in cassava variety ‘Xinxuan 048’using colchicine. Plant Cell, Tissue and Organ Culture (PCTOC), 128(3), 723–729. DOI




DOI: http://doi.org/10.17503/agrivita.v45i2.3633

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.