Productivity of Red Clover (Trifolium pratense L.) in Various Ways of Use in Soil and Climatic Conditions of the Western Region of Ukraine
Abstract
Red clover (Trifolium pratense L.) is a perennial plant of the legume family (Fabaceae). It is grown both in pure culture and in crops with perennial grasses. This study aims to assess the yield of red clover for hay (two cuttings) and pasture (four slopes) use in the soil and climatic conditions of the Western region of Ukraine. The subject of the study is four breeding numbers created by hybridization and selection methods. The placement of variants is systematic in a sequential arrangement of repetitions in several tiers. Field experiments were carried out over three years (2018–2020) in competitive variety testing. The study found that, on average, the period from regrowth to slope ripeness lasted 67–95 days, from regrowth to pasture ripeness (30–61 days), and from regrowth to economic ripeness of seeds (136–172 days), depending on the years of cultivation. With the hay use of red clover, the yield is 41.14–44.78 t/ha, with the pasture 50.18–52.38 t/ha.
Keywords
Full Text:
PDFReferences
Annicchiarico, P., & Pagnotta, M. A. (2012). Agronomic value and adaptation across climatically contrasting environments of Italian red clover landraces and natural populations. Grass and Forage Science, 67(4), 597–605. DOI
Boelt, B., Julier, B., Karagić, Đ., & Hampton, J. (2015). Legume seed production meeting market requirements and economic impacts. Critical Reviews in Plant Sciences, 34(1-3), 412-427. DOI
Boller, B., Schubiger, F. X., & Kölliker, R. (2010). Red clover. In B. Boller, U. K. Posselt, & F. Veronesi (Eds.), Fodder Crops and Amenity Grasses (pp. 439–456). New York: Springer. DOI
Deprez, B., Lambert, R., Decamps, C., & Peeters, A. (2004). Production and quality of red clover (Trifolium pratense) and lucerne (Medico sativa) in pure stand or in grass mixture in Belgium. Paper presented at Proceedings of the 20th General Meeting of the European Grassland Federation “Land Use Systems in Grassland Dominated Region”, Luzern, Switzerland. (pp. 498–500). Grassland Science in Europe Vol. 9. Retrieved from website
Elgersma, A., & Søegaard, K. (2018). Changes in nutritive value and herbage yield during extended growth intervals in grass–legume mixtures: effects of species, maturity at harvest, and relationships between productivity and components of feed quality. Grass and Forage Science, 73(1), 78–93. DOI
Eriksen, J., Askegaard, M., Rasmussen, J., & Søegaard, K. (2015). Nitrate leaching and residual effect in dairy crop rotations with grass–clover leys as influenced by sward age, grazing, cutting and fertilizer regimes. Agriculture, Ecosystems & Environment, 212, 75-84. DOI
Gierus, M., Kleen, J., Loges, R., & Taube, F. (2012). Forage legume species determine the nutritional quality of binary mixtures with perennial ryegrass in the first production year. Animal Feed Science and Technology, 172(3–4), 150-161. DOI
Harrison, M. T., Tardieu, F., Dong, Z., Messina, C. D., & Hammer, G. L. (2014). Characterizing drought stress and trait influence on maize yield under current and future conditions. Global Change Biology, 20(3), 867–878. DOI
Herbert, D. B., Ekschmitt, K., Wissemann, V., & Becker, A. (2018). Cutting reduces variation in biomass production of forage crops and allows low-performers to catch up: A case study of Trifolium pratense L. (red clover). Plant Biology, 20(3), 465–473. DOI
Inostroza, L., Ortega-Klose, F., Vásquez, C., & Wilckens, R. (2020). Changes in root architecture and aboveground traits of red clover cultivars driven by breeding to improve persistence. Agronomy, 10(12), 1896. DOI
Jakešová, H., Řepková, J., Hampel, D., Čechová, L., & Hofbauer, J. (2011). Variation of morphological and agronomic traits in hybrids of Trifolium pratense × T. medium and a comparison with the parental species. Czech Journal of Genetics and Plant Breeding, 47(1), 28–36. DOI
Karbivska, U. M., & Turak, O. Yu. (2015). Balance of nutrients of sod-podzolic soil for growing legumes. Bulletin of Sumy National Agrarian University Series "Agronomy and Biology", 3 (29), 116–119.
Kingston-Smith, A. H., Marshall, A. H., & Moorby, J. M. (2013). Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint. Animal, 7(Suppl. 1), 79–88. DOI
Kizeková, M., Tomaškin, J., Čunderlík, J., Jančová, Ľ., & Martincová, J. (2013). The yield stability and quality of legumes during two consecutive, extremely dry years. Agriculture, 59(4), 167–177. DOI
Kleen, J., Taube, F., & Gierus, M. (2011). Agronomic performance and nutritive value of forage legumes in binary mixtures with perennial ryegrass under different defoliation systems. The Journal of Agricultural Science, 149(1), 73-84. DOI
Konyk, G. S., Baystruk-Hlodan, L. S., Khomyak, M. M., & Zhapaleu, G. Z. (2015). Methodology for breeding perennial legumes and grasses in the Carpathian region. Guidelines. Obroshino. 156 p.
Krawutschke, M., Kleen, J., Weiher, N., Loges, R., Taube., F., & Gierus, M. (2013). Changes in crude protein fractions of forage legumes during the spring growth and summer regrowth period. The Journal of Agricultural Science, 151(1), 72-90. DOI
Leto, J., Perčulija, G., Bošnjak, K., Kutnjak, H., Vranić, M., & Čačić, I. (2013). Effects of genotype, inoculation and maturity stage at harvest on red clover (Trifolium pratense L.) yield and chemical composition. Mljekarstvo, 63(2), 98–108. Retrieved from website
Li, P., Chen, J., & Wu, P. (2011). Agronomic characteristics and grain yield of 30 spring wheat genotypes under drought stress and nonstress conditions. Agronomy Journal, 103(6), 1619–1628. DOI
Lüscher, A., Mueller-Harvey, I., Soussana, J. F., Rees, R. M., & Peyraud, J. L. (2014). Potential of legume-based grassland–livestock systems in Europe: a review. Grass and Forage Science, 69(2), 206–228. DOI
McKenna, P., Cannon, N., Conway, J., Dooley, J., & Davies, W. P. (2018). Red clover (Trifolium pratense) in conservation agriculture: a compelling case for increased adoption. International Journal of Agricultural Sustainability, 16(4-5), 342-366. DOI
Nyfeler, D., Huguenin-Elie, O., Suter, M., Frossard, E., & Lüscher, A. (2011). Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agriculture, Ecosystems & Environment, 140(1-2), 155–163. DOI
Pahlow, G. (2003) Preservation of forage legumes. 47. Jahrestagung AGF, Braunschweig 28–30.8.2003, 23–30.
Phelan, P., Moloney, A. P., McGeough, E. J., Humphreys, J., Bertilsson, J., O'Riordan, E. G., & O'Kiely, P. (2015). Forage legumes for grazing and conserving in ruminant production systems. Critical Reviews in Plant Sciences, 34(1-3), 281–326. DOI
Popović, S., Tucak, M., & Čupić, T. (2011). 'VIVA' – A new red clover (Trifolium pratense L.) cultivar. Sjemenarstvo, 28(3-4), 111–118. Retrieved from website
Riday, H. (2010). Progress made in improving red clover (Trifolium pratense L.) through breeding. International Journal of Plant Breeding, 4(1), 22–29. Retrieved from PDF
Shanker, A. K., Maheswari, M., Yadav, S. K., Desai, S., Bhanu, D., Attal, N. B., & Venkateswarlu, B. (2014). Drought stress responses in crops. Functional and Integrative Genomics, 14, 11–22. DOI
Sullivan, M. L., & Hatfield, R. D. (2006). Polyphenol oxidase and o-diphenols inhibit postharvest proteolysis in red clover and alfalfa. Crop Science, 46(2), 662–670. DOI
Thilakarathna, M. S., Papadopoulos, Y. A., Rodd, A. V., Grimmett, M., Fillmore, S. A. E., Crouse, M., & Prithiviraj, B. (2016). Nitrogen fixation and transfer of red clover genotypes under legume–grass forage based production systems. Nutrient Cycling in Agroecosystems, 106, 233–247. DOI
Tucak, M., Popović, S., Čupić, T., Krizmanić, G., Španić, V., Maglič, V., & Radović, J. (2016). Assessment of red clover (Trifolium pratense L.) productivity in environmental stress. Agriculture, 22(2), 3–9. Retrieved from website
van Eekeren, N., van Liere, D., de Vries, F., Rutgers, M., de Goede, R., & Brussaard, L. (2009). A mixture of grass and clover combines the positive effects of both plant species on selected soil biota. Applied Soil Ecology, 42(3), 254–263. DOI
Vaseva, I., Akiscan, Y., Simova-Stoilova, L., Kostadinova, A., Nenkova, R., Anders, I., … Demirevska, K. (2012). Antioxidant response to drought in red and white clover. Acta Physiologiae Plantarum, 34, 1689–1699. DOI
DOI: http://doi.org/10.17503/agrivita.v45i1.2982
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.