Performance of Some Thai Weed Extracts on Antioxidants and Atherosclerosis- Related Enzymes

Sunisa U-Yatung, Wanida Suebsaiprom, Tosapon Pornprom, Jamnian Chompoo

Abstract


This study used several methods to investigate the performance of aqueous extracts from some Thai weeds on antioxidants and atherosclerosis-related enzyme inhibitors. The inhibitory effect of aqueous extracts was expressed as the percentage of inhibition at a concentration of 500 μg/ml. GS-MS analysis was used to identify isolated compounds in sample extracts. The antioxidant activities were investigated using DPPH, ABTS, nitric oxide radical scavenging and oxidation of LDL. The results showed that the aqueous extract from the leaves of Bidens pilosa had greater inhibitory effects than others (71.23, 57.89 and 50.09%, respectively, except ABTS); however, B. pilosa had weaker inhibition than the positive controls. Pancreatic lipase and 15-lipoxygenase (15-LO) had inhibitory effects regarding atherosclerosis-related enzyme activities. The research found that Euphorbia hirta had stronger inhibitory activity against PL and 15-LO than other extracts (30.47 and 84.66%, respectively). Moreover, E. hirta had similar activity to quercetin against 15-LO (89.25%). Finally, isolated compounds were referred by GC-MC, the result presented more than 30 phenolic compounds and quite different characters, which might widely encouraged in antioxidants and inhibition of enzymatic activities. The results indicated that B. pilosa and E. hirta were the sources of bioactive compounds as antioxidants and anti-atherosclerosis, respectively.


Keywords


Antioxidant; Atherosclerosis; Bidens pilosa; Euphorbia hirta; Weed

Full Text:

PDF

References


Bartolome, A. P., Villaseñor, I. M., & Yang, W.-C. (2013). Bidens pilosa L. (Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-Based Complementary and Alternative Medicine, 2013, 340215. crossref

Boskou, G., Salta, F. N., Chrysostomou, S., Mylona, A., Chiou, A., & Andrikopoulos, N. K. (2006). Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chemistry, 94(4), 558–564. crossref

Burcu, G. B., Osman, C., Aslı, C., Namik, O. M., & Neşe, B. T. (2016). The protective cardiac effects of Β-myrcene after global cerebral ıschemia/reperfusion in C57Bl/J6 mouse. Acta Cirurgica Brasileira, 31(7), 456–462. crossref

Cappelletti, S., Piacentino, D., Sani, G., & Aromatario, M. (2015). Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Current Neuropharmacology, 13(1), 71–88. crossref

de Menezes Patrício Santos, C. C., Salvadori, M. S., Mota, V. G., Costa, L. M., de Almeida, A. A. C., de Oliveira, G. A. L., … de Almeida, R. N. (2013). Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neuroscience Journal, 2013, 949452. crossref

Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654–660. crossref

Galvão, M. A. M., Arruda, A. O. de, Bezerra, I. C. F., Ferreira, M. R. A., & Soares, L. A. L. (2018). Evaluation of the folin-ciocalteu method and quantification of total tannins in stem barks and pods from Libidibia ferrea (Mart. ex Tul) L. P. Queiroz. Brazilian Archives of Biology and Technology, 61, e18170586. crossref

Ganjare, A., & Raut, N. (2019). Nutritional and medicinal potential of Amaranthus spinosus. Journal of Pharmacognosy and Phytochemistry, 8(3), 3149–3156. Retrieved from pdf

Goudoum, A., Abdou, A. B., Ngamo, L. S. T., Ngassoum, M. B., & Mbofung, C. M. F. (2016). Antioxidant activities of essential oil of Bidens pilosa (Linn. Var. Radita) used for the preservation of food qualities in North Cameroon. Food Science and Nutrition, 4(5), 671–678. crossref

Govindarajan, R., Rastogi, S., Vijayakumar, M., Shirwaikar, A., Rawat, A. K. S., Mehrotra, S., & Pushpangadan, P. (2003). Studies on the antioxidant activities of Desmodium gangeticum. Biological and Pharmaceutical Bulletin, 26(10), 1424–1427. crossref

Hassan, S. (2020). Positive aspects of weeds as herbal remedies and medicinal plants. Journal of Research in Weed Science, 3(1), 57–70. crossref

Hsu, C. F., Peng, H., Basle, C., Travas-Sejdic, J., & Kilmartin, P. A. (2011). ABTS•+ scavenging activity of polypyrrole, polyaniline and poly(3,4-ethylenedioxythiophene). Polymer International, 60(1), 69–77. crossref

Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954–3962. crossref

Kale, P. M. (2016). A Review Article on Euphorbia hirta uses and pharmacological activities. Asian Journal of Research in Pharmaceutical Science, 6(3), 141–145. crossref

Kim, H. Y. (2007). Effects of onion (Allium cepa) skin extract on pancreatic lipase and body weightrelated parameters. Food Science and Biotechnology, 16(3), 434–438. Retrieved from crossref

Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., … Chen, S. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules (Basel, Switzerland), 21(10), 1374. crossref

Linton, M. F., Yancey, P. G., Davies, S. S., Jerome, W. G., Linton, E. F., Song, W. L., … Vickers, K. C. (2019). The role of lipids and lipoproteins in atherosclerosis. In K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, K. Dungan, A. Grossman, … D. P. Wilson (Eds.), Endotext. South Dartmouth, MA: MDText.com, Inc. Retrieved from crossref

Lyckander, I. M., & Malterud, K. E. (1996). Lipophilic flavonoids from Orthosiphon spicatus prevent oxidative inactivation of 15-lipoxygenase. Prostaglandins Leukotrienes and Essential Fatty Acids, 54(4), 239–246. crossref

Miri, S. (2018). Phytochemistry, antioxidant, and lipid peroxidation inhibition of the essential oils of Lavandula officinalis L. in Iran. International Journal of Food Properties, 21(1), 2550–2556. crossref

Mukhopadhyay, G., Kundu, S., Sarkar, A., Sarkar, P., Sengupta, R., & Kumar, C. (2018). A review on physicochemical & pharmacological activity of Eclipta alba. The Pharma Innovation Journal, 7(9), 78–83. Retrieved from website

Nejad, S. M., Özgüneş, H., & Başaran, N. (2017). Pharmacological and toxicological properties of eugenol. Turkish Journal of Pharmaceutical Sciences, 14(2), 201–206. crossref

Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, L., & Delikanli, B. (2014). Phenolics in human health. International Journal of Chemical Engineering and Applications, 5(5), 393–396. crossref

Paguigan, N. D., & Chichioco-Hernandez, C. L. (2014). 15-Lipoxygenase inhibition of selected Philippine medicinal plants. Pharmacognosy Journal, 6(1), 43–46. crossref

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. crossref

Peng, J., Luo, F., Ruan, G., Peng, R., & Li, X. (2017). Hypertriglyceridemia and atherosclerosis. Lipids in Health and Disease, 16(1), 233. crossref

Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11–26. crossref

Pooja, V., & Sunita, M. (2014). Antioxidants and disease prevention. International Journal of Advanced Scientific and Technical Research, 4(2), 903–911. Retrieved from pdf

Rattan, A. K., & Arad, Y. (1998). Temporal and kinetic determinants of the inhibition of LDL oxidation by N-acetylcysteine (NAC). Atherosclerosis, 138(2), 319–327. crossref

Salehi, B., Iriti, M., Vitalini, S., Antolak, H., Pawlikowska, E., Kręgiel, D., … Seca, A. M. L. (2019). Euphorbiaderived natural products with potential for use in health maintenance. Biomolecules, 9(8), 337. crossref

Singh, G., Passsari, A. K., Singh, P., Leo, V. V., Subbarayan, S., Kumar, B., … Kumar, N. S. (2017). Pharmacological potential of Bidens pilosa L. and determination of bioactive compounds using UHPLC-QqQ(LIT)-MS/MS and GC/MS. BMC Complementary and Alternative Medicine, 17(1), 492. crossref

Steinbrecher, U. P., Parthasarathy, S., Leake, D. S., Witztum, J. L., & Steinberg, D. (1984). Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 81(12), 3883–3887. crossref

Toledo-Ibelles, P., & Mas-Oliva, J. (2018). Antioxidants in the fight against atherosclerosis: Is this a dead end? Current Atherosclerosis Reports, 20(7), 36. crossref

Tuhin, R. H., Begum, M., Rahman, S., Karim, R., Begum, T., Ahmed, S. U., … Begum, R. (2017). Wound healing effect of Euphorbia hirta linn. (Euphorbiaceae) in alloxan induced diabetic rats. BMC Complementary and Alternative Medicine, 17, 423. crossref

Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines (Basel, Switzerland), 5(3), 93. crossref

Zhang, P., Xing, X., Hu, C., Yu, H., Dong, Q., Chang, G., … Zhang, D. (2016). 15-Lipoxygenase-1 is involved in the effects of atorvastatin on endothelial dysfunction. Mediators of Inflammation, 2016, 6769032. crossref

Zuccolotto, T., Bressan, J., Lourenço, A. V. F., Bruginski, E., Veiga, A., Marinho, J. V. N., … Campos, F. R. (2019). Chemical, antioxidant, and antimicrobial evaluation of essential oils and an anatomical study of the aerial parts from Baccharis species (Asteraceae). Chemistry and Biodiversity, 16(4), e1800547. crossref




DOI: http://doi.org/10.17503/agrivita.v0i0.2322

Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.