Mechanism of Salt Stress Tolerance in Plants: Role of Cation/H+ Antiporters

Qurban Ali, Muzammal Mateen Azhar, Arif Malik, Shahbaz Ahmad, Muhammad Zafar Saleem, Muhammad Waseem

Abstract


Salinity is an important adverse environmental problem that caused a loss in the sense of reducing yield per plant, morphological, and physiological functions of crop plants. The plants compete with environmental stress conditions to withstand following normal growth and development. The exchange of cations or protons (H+) takes place across the cell membrane to maintain the osmotic pressure of cells under salt stress conditions. There is a huge number of cation/H+ antiporter 1 protein-producing gene by plant cells under salt stress conditions has been identified. However, a few have been characterized and sequenced which contributes to ion homeostasis and osmotic adjustment of cells. These cation/H+ antiporters are produced and stored in the vacuoles, endosomal forms and in the cytoplasm. The cation/H+ antiporters are involved in the homeostasis of K+, Na+, and pH of the cell under salinity stress conditions. The cation/H+ antiporters help plants cells to regulate all physiological functions under salt stress conditions.


Keywords


AtNHX1 gene; Cation; H+; Homeostasis; Salt tolerance

Full Text:

PDF

References


Abdel Latef, A. A. H., & Ahmad, P. (2015). Legumes and breeding under abiotic stress: An overview. In M. M. Azooz & P. Ahmad (Eds.), Legumes under Environmental Stress: Yield, Improvement and Adaptations (pp. 1–20). West Sussex, UK: John Wiley & Sons, Inc. crossref

Abdel Latef, A. A. H., Mostofa, M. G., Rahman, M. M., Abdel-Farid, I. B., & Tran, L. S. P. (2019). Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants. Journal of Plant Growth Regulation, 38, 966–979. crossref

Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling & Behavior, 5(4), 369–374. crossref

Adams, E., & Shin, R. (2014). Transport, signaling, and homeostasis of potassium and sodium in plants. Journal of Integrative Plant Biology, 56(3), 231–249. crossref

Aharon, G. S., Apse, M. P., Duan, S., Hua, X., & Blumwald, E. (2003). Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis thaliana. Plant and Soil, 253(1), 245–256. crossref

Ahmadi, H., Corso, M., Weber, M., Verbruggen, N., & Clemens, S. (2018). CAX1 suppresses Cdinduced generation of reactive oxygen species in Arabidopsis halleri. Plant Cell and Environment, 41(10), 2435–2448. crossref

Ali, M., Rafique, F., Ali, Q., & Malik, A. (2020). Genetic modification for salt and drought tolerance in plants through SODERF3. Biological and Clinical Sciences Research Journal, 2020, e022. Retrieved from pdf

Almeida, D. M., Margarida Oliveira, M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(suppl. 1), 326–345. crossref

Amagaya, K., Shibuya, T., Nishiyama, M., Kato, K., & Kanayama, Y. (2020). Characterization and expression analysis of the Ca2+/cation antiporter gene family in tomatoes. Plants, 9(1), 25. crossref

An, R., Chen, Q. J., Chai, M. F., Lu, P. L., Su, Z., Qin, Z. X., … Wang, X. C. (2007). AtNHX8, a member of the monovalent cation: Proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant Journal, 49(4), 718–728. crossref

Apse, M. P., & Blumwald, E. (2007). Na+ transport in plants. FEBS Letters, 581(12), 2247–2254. crossref

Arnao, M. B., & Hernández-Ruiz, J. (2019). Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Research, 2(3), 152–168. crossref

Ashraf, M., Athar, H. R., Harris, P. J. C., & Kwon, T. R. (2008). Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97, 45–110. crossref

Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 8, 509. crossref

Bafeel, S. O. (2014). Physiological parameters of salt tolerance during germination and seedling growth of Sorghum bicolor cultivars of the same subtropical origin. Saudi Journal of Biological Sciences, 21(4), 300–304. crossref

Baghour, M., Gálvez, F. J., Sánchez, M. E., Aranda, M. N., Venema, K., & Rodríguez-Rosales, M. P. (2019). Overexpression of LeNHX2 and SlSOS2 increases salt tolerance and fruit production in double transgenic tomato plants. Plant Physiology and Biochemistry, 135, 77–86. crossref

Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24(1), 23–58. crossref

Bassil, E., & Blumwald, E. (2014). The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Current Opinion in Plant Biology, 22, 1–6. crossref

Bassil, E., Tajima, H., Liang, Y.-C., Ohto, M., Ushijima, K., Nakano, R., … Blumwald, E. (2011). The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. The Plant Cell, 23(9), 3482–3497. crossref

Bölter, B., Mitterreiter, M. J., Schwenkert, S., Finkemeier, I., & Kunz, H.-H. (2020). The topology of plastid inner envelope potassium cation efflux antiporter KEA1 provides new insights into its regulatory features. Photosynthesis Research, 145, 43–54. crossref

Bowers, K., Levi, B. P., Patel, F. I., & Stevens, T. H. (2000). The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell, 11(12), 4277–4294. crossref

Brett, C. L., Donowitz, M., & Rao, R. (2005). Evolutionary origins of eukaryotic sodium/proton exchangers. American Journal of Physiology-Cell Physiology, 288(2), C223–C239. crossref

Cai, X., Zhang, C., Shu, W., Ye, Z., Li, H., & Zhang, Y. (2016). The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochemical and Biophysical Research Communications, 474(4), 736–741. crossref

Cao, B., Long, D., Zhang, M., Liu, C., Xiang, Z., & Zhao, A. (2016). Molecular characterization and expression analysis of the mulberry Na+/H+ exchanger gene family. Plant Physiology and Biochemistry, 99, 49–58. crossref

Casey, J. R., Grinstein, S., & Orlowski, J. (2010). Sensors and regulators of intracellular pH. Nature Reviews Molecular Cell Biology, 11, 50–61. crossref

Chanroj, S., Wang, G., Venema, K., Zhang, M. W., Delwiche, C. F., & Sze, H. (2012). Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Frontiers in Plant Science, 3, 25. crossref

Chauhan, S., Forsthoefel, N., Ran, Y., Quigley, F., Nelson, D. E., & Bohnert, H. J. (2000). Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant Journal, 24(4), 511–522. crossref

Chien, P. S., Nam, H. G., & Chen, Y. R. (2015). A saltregulated peptide derived from the CAP superfamily protein negatively regulates saltstress tolerance in Arabidopsis. Journal of Experimental Botany, 66(17), 5301–5313. crossref

Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19(6), 371–379. crossref

Dhar, R., Sägesser, R., Weikert, C., Yuan, J., & Wagner, A. (2011). Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. Journal of Evolutionary Biology, 24(5), 1135–1153. crossref

Djanaguiraman, M., & Vara Prasad, P. V. (2013). Effects of salinity on ion transport, water relations and oxidative damage. In P. Ahmad, M. Azooz, & M. Prasad (Eds.), Ecophysiology and Responses of Plants under Salt Stress (pp. 89–114). New York: Springer. crossref

Feki, K., Quintero, F. J., Khoudi, H., Leidi, E. O., Masmoudi, K., Pardo, J. M., & Brini, F. (2014). A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Reports, 33(2), 277–288. crossref

Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika, H., & Tanaka, Y. (2004). Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant and Cell Physiology, 45(2), 146–159. crossref

Gao, X., Ren, Z., Zhao, Y., & Zhang, H. (2003). Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiology, 133(4), 1873–1881. crossref

Gharsallah, C., Fakhfakh, H., Grubb, D., & Gorsane, F. (2016). Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB PLANTS, 8, plw055. crossref

Hamaji, K., Nagira, M., Yoshida, K., Ohnishi, M., Oda, Y., Uemura, T., … Mimura, T. (2009). Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant and Cell Physiology, 50(12), 2023–2033. crossref

Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science, 7, 1787. crossref

Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684. crossref

Haseeb, A., Nawaz, A., Rao, M. Q. A., Ali, Q., & Malik, A. (2020). Genetic variability and association among seedling traits of Zea mays under drought stress conditions. Biological and Clinical Sciences Research Journal, 2020, e020. Retrieved from pdf

Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499. crossref

He, C., Yan, J., Shen, G., Fu, L., Holaday, A. S., Auld, D., … Zhang, H. (2005). Expression of an arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant and Cell Physiology, 46(11), 1848–1854. crossref

Hedrich, R. (2012). Ion channels in plants. Physiological Reviews, 92(4), 1777–1811. crossref

Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 5, 11. crossref

Hrabak, E. M., Chan, C. W. M., Gribskov, M., Harper, J. F., Choi, J. H., Halford, N., … Harmon, A. C. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology, 132(2), 666–680. crossref

Huertas, R., Rubio, L., Cagnac, O., García-Sánchez, M. J., Alché, J. D. D., Venema, K., … RodríguezRosales, M. P. (2013). The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. Plant, Cell & Environment, 36(12), 2135–2149. crossref

Iqra, L., Rashid, M. S., Ali, Q., Latif, I., & Malik, A. (2020). Evaluation of genetic variability for salt tolerance in wheat. Biological and Clinical Sciences Research Journal, 2020, e016. Retrieved from pdf

Ismail, A. M., & Horie, T. (2017). Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology, 68, 405–434. crossref

Ismail, A., Riemann, M., & Nick, P. (2012). The jasmonate pathway mediates salt tolerance in grapevines. Journal of Experimental Botany, 63(5), 2127–2139. crossref

Janz, D., Behnke, K., Schnitzler, J. P., Kanawati, B., Schmitt-Kopplin, P., & Polle, A. (2010). Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biology, 10, 150. crossref

Jia, Q., Zheng, C., Sun, S., Amjad, H., Liang, K., & Lin, W. (2018). The role of plant cation/proton antiporter gene family in salt tolerance. Biologia Plantarum, 62(4), 617–629. crossref

Jiang, J.-L., Tian, Y., Li, L., Yu, M., Hou, R.-P., & Ren, X.-M. (2019). H(2)S alleviates salinity stress in cucumber by maintaining the Na(+)/K(+) balance and regulating H(2)S metabolism and oxidative stress response. Frontiers in Plant Science, 10, 678. crossref

Jiang, W., Sun, L., Yang, X., Wang, M., Esmaeili, N., Pehlivan, N., … Zhao, Y. (2017). The effects of transcription directions of transgenes and the gypsy insulators on the transcript levels of transgenes in transgenic Arabidopsis. Scientific Reports, 7, 14757. crossref

Jiang, X., Leidi, E. O., & Pardo, J. M. (2010). How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signaling and Behavior, 5(7), 792–795. crossref

Joshi, M., Jha, A., Mishra, A., & Jha, B. (2013). Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE, 8(8), e71136. crossref

Krebs, M., Beyhl, D., Görlich, E., Al-Rasheid, K. A. S., Marten, I., Stierhof, Y. D., … Schumacher, K. (2010). Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 3251–3256. crossref

Krulwich, T. A., Sachs, G., & Padan, E. (2011). Molecular aspects of bacterial pH sensing and homeostasis. Nature Reviews Microbiology, 9(5), 330–343. crossref

Kumar, K., Kumar, M., Kim, S. R., Ryu, H., & Cho, Y. G. (2013). Insights into genomics of salt stress response in rice. Rice, 6, 27. crossref

Leidi, E. O., Barragán, V., Rubio, L., El-Hamdaoui, A., Ruiz, M. T., Cubero, B., … Pardo, J. M. (2010). The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant Journal, 61(3), 495–506. crossref

Li, M., Li, Y., Li, H., & Wu, G. (2011). Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera (L.) Vent. Tree Physiology, 31(3), 349–357. crossref

Li, N., Wang, X., Ma, B., Du, C., Zheng, L., & Wang, Y. (2017). Expression of a Na+/H+ antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. Journal of Plant Physiology, 218, 109–120. crossref

Ma, D. M., Xu, W. R., Li, H. W., Jin, F. X., Guo, L. N., Wang, J., … Xu, X. (2014). Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.). Protoplasma, 251(1), 219–231. crossref

Ma, S., & Bohnert, H. J. (2007). Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biology, 8, R49. crossref

Ma, Y.-C., Augé, R. M., Dong, C., & Cheng, Z.-M. (Max). (2017). Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: A meta-analysis. Plant Biotechnology Journal, 15(2), 162–173. crossref

Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139–158. crossref

Manohar, M., Shigaki, T., & Hirschi, K. D. (2011). Plant cation/H+ exchangers (CAXs): Biological functions and genetic manipulations. Plant Biology, 13(4), 561–569. crossref

Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J. K., Pardo, J. M., & Quintero, F. J. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 143(2), 1001–1012. crossref

Martinière, A., Bassil, E., Jublanc, E., Alcon, C., Reguera, M., Sentenac, H., … Paris, N. (2013). In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. Plant Cell, 25(10), 4028–4043. crossref

Mäser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., … Guerinot, M. L. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126(4), 1646–1667. crossref

Mazel, A., Leshem, Y., Tiwari, B. S., & Levine, A. (2004). Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiology, 134(1), 118–128. crossref

McCubbin, T., Bassil, E., Zhang, S., & Blumwald, E. (2014). Vacuolar Na+/H+ NHX-type antiporters are required for cellular K+ homeostasis, microtubule organization and directional root growth. Plants (Basel, Switzerland), 3(3), 409–426. crossref

Mei, H., Cheng, N. H., Zhao, J., Park, S., Escareno, R. A., Pittman, J. K., & Hirschi, K. D. (2009). Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytologist, 183(1), 95–105. crossref

Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16, 237–251. crossref

Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33(4), 453–467. crossref

Modareszadeh, M., Bahmani, R., Kim, D., & Hwang, S., (2020). CAX3 (cation/proton exchanger) mediates a Cd tolerance by decreasing ROS through Ca elevation in Arabidopsis. Plant Molecular Biology, 2020, 1-18. crossref

Morgan, A. J., Platt, F. M., Lloyd-Evans, E., & Galione, A. (2011). Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochemical Journal, 439(3), 349–374. crossref

Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops - what is the cost? New Phytologist, 208(3), 668–673. crossref

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. crossref

Muqadas, S., Ali, Q., & Malik, A. (2020). Genetic association among seedling traits of Zea mays under multiple stresses of salts, heavy metals and drought. Biological and Clinical Sciences Research Journal, 2020, e026. Retrieved from pdf

Naseem, S., Ali, Q., & Malik, A. (2020). Evaluation of maize seedling traits under salt stress. Biological and Clinical Sciences Research Journal, 2020, e025. Retrieved from pdf

Noreen, S., Siddiq, A., Hussain, K., Ahmad, S., & Hasanuzzaman, M. (2017). Foliar application of salicylic acid with salinity stress on physiological and biochemical attributes of sunflower (Helianthus annuus L.) crop. Acta Scientiarum Polonorum, Hortorum Cultus, 16(2), 57–74. Retrieved from website

Ohnishi, M., Fukada-Tanaka, S., Hoshino, A., Takada, J., Inagaki, Y., & Iida, S. (2005). Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory. Plant and Cell Physiology, 46(2), 259–267. crossref

Ohta, M., Hayashi, Y., Nakashima, A., Hamada, A., Tanaka, A., Nakamura, T., & Hayakawa, T. (2002). Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters, 532(3), 279–282. crossref

Olías, R., Eljakaoui, Z., Li, J., De Morales, P. A., MarínManzano, M. C., Pardo, J. M., & Belver, A. (2009). The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant, Cell & Environment, 32(7), 904–916. crossref

Orij, R., Brul, S., & Smits, G. J. (2011). Intracellular pH is a tightly controlled signal in yeast. Biochimica et Biophysica Acta - General Subjects, 1810(10), 933–944. crossref

Padmanaban, S., Chanroj, S., Kwak, J. M., Li, X., Ward, J. M., & Sze, H. (2007). Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiology, 144(1), 82–93. crossref

Pardo, J. M., & Rubio, F. (2011). Na+ and K+ transporters in plant signaling. In M. Geisler & K. Venema (Eds.), Transporters and Pumps in Plant Signaling (pp. 65–98). Berlin, Heidelberg: Springer. crossref

Pardo, J. M., Cubero, B., Leidi, E. O., & Quintero, F. J. (2006). Alkali cation exchangers: Roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany, 57(5), 1181–1199. crossref

Park, H. J., Kim, W. Y., & Yun, D. J. (2016). A new insight of salt stress signaling in plant. Molecules and Cells, 39(6), 447–459. crossref

Paroutis, P., Touret, N., & Grinstein, S. (2004). The pH of the secretory pathway: Measurement, determinants, and regulation. Physiology, 19(4), 207–215. crossref

Pehlivan, N., Sun, L., Jarrett, P., Yang, X., Mishra, N., Chen, L., … Zhang, H. (2016). Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. Plant & Cell Physiology, 57(5), 1069–1084. crossref

Pinedo, I., Ledger, T., Greve, M., & Poupin, M. J. (2015). Burkholderia phytofirmans PsJN induces longterm metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Frontiers in Plant Science, 6, 466. crossref

Pitman, M. G., & Läuchli, A. (2006). Global impact of salinity and agricultural ecosystems. In A. Läuchli & U. Lüttge (Eds.), Salinity: Environment - Plants - Molecules (pp. 3–20). Dordrecht: Springer. crossref

Pittman, J. K. (2012). Multiple transport pathways for mediating intracellular pH homeostasis: The contribution of H(+)/ion exchangers. Frontiers in Plant Science, 3, 11. crossref

Qiu, Q.-S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J.-K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 8436–8441. crossref

Qiu, Q.-S., Guo, Y., Quintero, F. J., Pardo, J. M., Schumaker, K. S., & Zhu, J.-K. (2004). Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. Journal of Biological Chemistry, 279(1), 207–215. crossref

Quintero, F. J., Blatt, M. R., & Pardo, J. M. (2000). Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Letters, 471(2–3), 224–228. crossref

Quintero, F. J., Ohta, M., Shi, H., Zhu, J. K., & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 9061–9066. crossref

Rajagopal, D., Agarwal, P., Tyagi, W., Singla-Pareek, S. L., Reddy, M. K., & Sopory, S. K. (2007). Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Molecular Breeding, 19(2), 137–151. crossref

Reddy, I. N. B. L., Kim, B. K., Yoon, I. S., Kim, K. H., & Kwon, T. R. (2017). Salt tolerance in rice: Focus on mechanisms and approaches. Rice Science, 24(3), 123–144. crossref

Reguera, M., Bassil, E., & Blumwald, E. (2014). Intracellular NHX-type cation/H+ antiporters in plants. Molecular Plant, 7(2), 261–263. crossref

Rodríguez-Rosales, M. P., Gálvez, F. J., Huertas, R., Aranda, M. N., Baghour, M., Cagnac, O., & Venema, K. (2009). Plant NHX cation/proton antiporters. Plant Signaling & Behavior, 4(4), 265–276. crossref

Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124. crossref

Rus, A., Yokoi, S., Sharkhuu, A., Reddy, M., Lee, B. H., Matsumoto, T. K., … Hasegawa, P. M. (2001). AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 14150–14155. crossref

Sajid, M., Rashid, B., Ali, Q., & Husnain, T. (2018). Mechanisms of heat sensing and responses in plants. It is not all about Ca2+ ions. Biologia Plantarum, 62, 409–420. crossref

Senadheera, P., Singh, R. K., & Maathuis, F. J. M. (2009). Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance. Journal of Experimental Botany, 60(9), 2553–2563. crossref

Serrano, R., & Rodriguez-Navarro, A. (2001). Ion homeostasis during salt stress in plants. Current Opinion in Cell Biology, 13(4), 399–404. crossref

Shabala, S., & Munns, R. (2012). Salinity stress: Physiological constraints and adaptive mechanisms. In Plant Stress Physiology (pp. 59–93). CAB International. crossref

Shen, J., Zeng, Y., Zhuang, X., Sun, L., Yao, X., Pimpl, P., & Jiang, L. (2013). Organelle pH in the Arabidopsis endomembrane system. Molecular Plant, 6(5), 1419–1437. crossref

Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113(6), 685–700. crossref

Shin, R. (2014). Strategies for improving potassium use efficiency in plants. Molecules and Cells, 37(8), 575–584. crossref

Steiner, J., & Sazanov, L., (2020). Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter. Elife, 9, e59407. crossref

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32–43. crossref

Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503–527. crossref

Tian, S., Guo, R., Zou, X., Zhang, X., Yu, X., Zhan, Y., … Si, T. (2019). Priming with the green leaf volatile (Z)-3-hexeny-1-yl acetate enhances salinity stress tolerance in peanut (Arachis hypogaea L.) seedlings. Frontiers in Plant Science, 10, 785. crossref

Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., & Stockinger, B. (2006). TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 24(2), 179–189. crossref

Venema, K., Belver, A., Marín-Manzano, M. C., RodríguezRosales, M. P., & Donaire, J. P. (2003). A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants. Journal of Biological Chemistry, 278(25), 22453–22459. crossref

Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 16(2), 123–132. crossref

Wang, B., Zhai, H., He, S., Zhang, H., Ren, Z., Zhang, D., & Liu, Q. (2016). A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Scientia Horticulturae, 201, 153–166. crossref

Wang, L., Wu, X., Liu, Y., & Qiu, Q. S. (2015). AtNHX5 and AtNHX6 control cellular K+ and pH homeostasis in Arabidopsis: Three conserved acidic residues are essential for K+ transport. PLoS ONE, 10(12), e0144716. crossref

Wu, X. X., Li, J., Wu, X. D., Liu, Q., Wang, Z. K., Liu, S. S., … Su, A. Y. (2016). Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance. Genetics and Molecular Research, 15(2), 1–12. crossref

Wu, X., Ebine, K., Ueda, T., & Qiu, Q. S. (2016). AtNHX5 and AtNHX6 are required for the subcellular localization of the SNARE complex that mediates the trafficking of seed storage proteins in Arabidopsis. PLoS ONE, 11(3), e0151658. crossref

Xiong, L., Schumaker, K. S., & Zhu, J. K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell, 14(suppl. 1), S165–S183. crossref

Yadav, N. S., Shukla, P. S., Jha, A., Agarwal, P. K., & Jha, B. (2012). The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biology, 12, 188. crossref

Yamaguchi, T., & Blumwald, E. (2005). Developing salt-tolerant crop plants: Challenges and opportunities. Trends in Plant Science, 10(12), 615–620. crossref

Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 217(2), 523–539. crossref

Ye, L., Zhao, X., Bao, E., Cao, K., & Zou, Z. (2019). Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem ii activities and stress-response gene expressions under salinity-alkalinity stresses. Frontiers in Plant Science, 10, 863. crossref

Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (2002). Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. The Plant Journal, 30(5), 529–539. crossref

Yoshida, K., Kawachi, M., Mori, M., Maeshima, M., Kondo, M., Nishimura, M., & Kondo, T. (2005). The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. heavenly blue. Plant and Cell Physiology, 46(3), 407–415. crossref

Yousef, F., Shafique, F., Ali, Q., & Malik, A. (2020). Effects of salt stress on the growth traits of chickpea (Cicer arietinum L.) and pea (Pisum sativum L.) seedlings. Biological and Clinical Sciences Research Journal, 2020, e029. Retrieved from pdf

Yue, Y., Zhang, M., Zhang, J., Duan, L., & Li, Z. (2012). SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. Journal of Plant Physiology, 169(3), 255–261. crossref

Zhang, Z., Yao, X., & Zhu, H. (2010). Potential application of geopolymers as protection coatings for marine concrete II. microstructure and anticorrosion mechanism. Applied Clay Science, 49(1–2), 7–12. crossref

Zhao, J., Barkla, B. J., Marshall, J., Pittman, J. K., & Hirschi, K. D. (2008). The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+- ATPase activity. Planta, 227(3), 659–669. crossref

Zheng, S., Pan, T., Fan, L., & Qiu, Q.-S. (2013). A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis. PLOS ONE, 8(11), e81463. crossref

Zhou, Y., Yin, X., Wan, S., Hu, Y., Xie, Q., Li, R., … Jiang, X. (2018). The Sesuvium portulacastrum plasma membrane Na+/H+ antiporter SpSOS1 complemented the salt sensitivity of transgenic Arabidopsis sos1 mutant plants. Plant Molecular Biology Reporter, 36(4), 553–563. crossref

Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6(5), 441–445. crossref




DOI: http://doi.org/10.17503/agrivita.v42i3.2242

Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.