Rapid Somatic Embryogenesis of Citrus reticulata Blanco cv. Madu in an Air-Lift Bioreactor Culture

Dita Agisimanto, Normah M. N., Rusli Ibrahim

Abstract


Embryogenic cell (EC) growth and proliferation as well as somatic embryo induction were examined in a bioreactor culture using Murashige and Skoog basal medium particularly for the influence of 6-benzyladenine (BA) concentration, initial cell density and aeration rate. Embryogenic callus was induced from seeds of Citrus reticulata Blanco cv. Madu. The cell suspension in a 3-L bioreactor exhibited maximum cell growth following the addition of 1.5 mg/l of BA. The fresh weight (FW) of the cells after 28 days of growth was found to increase from an initial of 5.5 g cell culture to 57.3 g, a 10.4-fold increase and the maximum growth rate (GR) of the cells (0.33 g/day) was attained by the 7th day of culture. In the cell density experiment, ECs at a concentration of 5.5 g/l constituted the most effective inoculum, reaching the highest GR of ECs (0.52 g/day), again by the 7th day of culture. In the aeration experiment, the highest EC GR of 2.6 g/daywas obtained at the maximum aeration rate of 1.5 vvm (air volume medium/ volume/min). After 28 days of somatic embryogenesis, 79% of ECs became somatic embryos, of which 29% were at cotyledonary stage.


Keywords


Aeration rate; 6-benzyladenine; Initial cell density

Full Text:

PDF

References


Agisimanto, D., Normah, M. N., Ibrahim, R., & Mohamad, A. (2012). Efficient somatic embryo production of limau madu (Citrus suhuiensis Hort. ex Tanaka) in liquid culture. African Journal of Biotechnology, 11, 2879-2888.

Akalezi, C. O., Liu, S., Li, Q. S., Yu, J. T., & Zhong, J. J. (1999). Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochemistry, 34, 639–642.

Altaf, S., Khan, I. A., Sadia, B., Jaskani, M. J., & Khan, A. A. (2017). Initiation and maintenance of cell suspension cultures of two Citrus Species for protoplast isolation. International Journal of Agriculture & Biology, 19, 8-12.

Bendix, C., & Lewis, J. D. (2018). The enemy within: phloem-limited pathogens. Molecular Plant Pathology, 19, 238–254.

Beom, J. S., Ho, P. J., Man, P. S., Hoon, L. D., & Yun, Y. S. (2017). Production of Citrus plants from ovule cell culture and verification of CTV-free plants. Horticultural Science and Technology, 35 121-130.

Bulbarela-Marini, J. E., Gómez-Merino, F. C., Galindo-Tovar, M. E., Solano-Rodríguez, L. A., Murguía-González, J., Pastelín-Solano, M. C., . . . Castañeda-Castro, O. (2019). The in vitro propagation system of Citrus × latifolia (Yu. Tanaka) Yu. Tanaka (Rutaceae) affects the growth and depletion of nutriments. In Vitro Cellular & Developmental Biology - Plant, 55, 290-295.

Carimi, F., & Pasquale, F. D. (2003). Micropropagation of Citrus. In S. M. Jain & K. Ishii (Eds.), Micropropagation of woody trees and fruits (pp. 589-619). Dordrecht: Kluwer Academic Publisher.

Chiancone, B., & Germanà, M. A. (2013). Micropropagation of Citrus spp . by organogenesis and somatic embryogenesis In M. Lambardi, E. A. Ozudogru & A. M. Jain (Eds.), Protocols for Micropropagation of Selected Economically-Important Horticultural Plants (Vol. 994, pp. 99-118). New York: Humana Press.

Cui, H.-Y., Murthy, H. N., Moh, S. H., Cui, Y., Lee, E.-J., & Paek, K.-Y. (2014). Protocorm culture of Dendrobium candidum in balloon type bubble bioreactors. Biochemical Engineering Journal, 88, 26-29. doi: crossref

Efferth, T. (2019). Biotechnology application of plant callus culture. Engineering, 5, 50-59.

Egertsdotter, U., Ahmad, I., & Clapham, D. (2019 ). Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on Conifers. Front. Plant Sci., 10, 1-13.

Eibl, R., Meier, P., Stutz, I., Schildberger, D., Hühn, T., & Eibl, D. (2018). Plant cell culture technology in the cosmetics and food industries: current state and future trends. Applied Microbiology and Biotechnology, 102, 8661-8675.

El-Sherif, N. A. (2019). Impact of plant tissue culture on agricultural sustainability. In A. M. Negm & M. Abu-hashim (Eds.), Sustainability of agricultural environment in Egypt: Part II - Soil-water-plant nexus (Vol. 77, pp. 93-108). Switzerland: Springer.

Februyani, N., Widoretno, W., & Indriyani, S. (2016). Effect of cell density and benzylaminopurine on the growth of somatic embryo of Citrus Mandarin Batu 55 (Citrus reticulate Blanco) in liquid culture. J. Exp. Life Sci., 6, 1-4.

Fernandes, P., & Cabral, J. M. S. (2016). Bioreactors. In Z. I. Önsan & A. K. Avci (Eds.), Multiphase catalytic reactors: theory, design, manufacturing, and applications (pp. 156-170). New Jersey: John Wiley & Sons.

Gerolino, E. F., Chierrito, T. P. C., Filho, A. S., Souto, E. R., Gonçalves, R. A. C., & Oliveira, A. J. B. (2015). Evaluation of limonoid production in suspension cell culture of Citrus sinensis. Revista Brasileira de Farmacognosia, 5, 455-461.

Gorret, N., Rosli, S. K., Oppenheimb, S. F., Willis, L. B., Lessard, P. A., Rhab, C. K., & Sinskey, A. J. (2004). Bioreactor culture of oil palm (Elaeis guineensis) and effects of nitrogen source, inoculum size, and conditioned medium on biomass production. Journal of Biotechnology, 108, 253-263.

Gulzar, B., Mujib, A., Rajam, M. V., Frukh, A., & Zafar, N. (2019). Identification of somatic embryogenesis (SE) related proteins through label-free shotgun proteomic method and cellular role in Catharanthus roseus (L.) G. Don. Plant Cell, Tissue and Organ Culture, 137, 225-237.

Kieber, J. J., & Schaller, G. E. (2018 ). Cytokinin signaling in plant development. Development, 145, 1-7.

Kiong, A. L. P., Wan, L. S., Hussein, S., & Ibrahim, R. (2008). Induction of somatic embryos from different explants of Citrus sinensis. Journal of Plant Sciences, 3, 18-32.

Lustinec, J., Cvrckova, F., Cızkova, J., Dolezel, J., Kaminek, M., & Zarsky, V. (2014). Multiple, concentration-dependent effects of sucrose, auxins and cytokinins in explant cultures of kale and tobacco Acta Physiologia Plantarum, 36, 1981-1991.

Meziane, M., Frasheri, D., Carra, A., Boudjeniba, M., D’Onghia, A. M., Mercati, F., . . . Carimi, F. (2017). Attempts to eradicate graft-transmissible infections through somatic embryogenesis in Citrus ssp. and analysis of genetic stability of regenerated plants. European Journal of Plant Pathology, 148, 85-95.

Nartop, P. (2018). Engineering of biomass accumulation and secondary metabolite production in plant cell and tissue cultures. In P. Ahmad, M. A. Ahanger, V. P. Singh, D. K. Tripathi, P. Alam & M. N. Alyemeni (Eds.), Plant Metabolites and Regulation Under Environmental Stress. London Academic Press.

Nasri, A., Baklouti, E., Romdhane, A. B., Maalej, M., Schumacher, H. M., Drira, N., & Fki, L. (2019). Large-scale propagation of Myrobolan (Prunus cerasifera) in RITA® bioreactors and ISSR-based assessment of genetic conformity. Scientia Horticulturae, 245, 144-153.

Nic-Can, G. I., Galaz-Avalos, R. M., De-la-Pena, C., Alcazar-Magana, A., Wrobel, K., & Loyola-Vargas, V. M. (2015). Somatic embryogenesis: Identified factors that lead to embryonic repression. A case of species of the same genus. PlosOne, 10, 1-21.

Nielsen, E., Temporiti, M. E. E., & Cella, R. (2019). Improvement of phytochemical production by plant cells and organ culture and by genetic engineering. Plant Cell Reports.

Nurwahyuni, I., & Sinaga, R. (2018). In vitro propagation of threatened Brastagi Citrus variety Brastepu (Citrus nobilis Brastepu) CVPD free throughshoot tips subculture Pak. J. Bot, 50, 667-678.

Özcana, E., Sargına, S., & Göksungurb, Y. (2014). Comparison of pullulan production performances of air-lift and bubble column bioreactors and optimization of process parameters in air-lift bioreactor. Biochemical Engineering Journal, 92, 9-15.

Paek, K. Y., Chakrabarty, D., & Hahn, E. J. (2005). Application of bioreactor system for large-scale production of horticultural and medicinal plants. In A. K. Hvoslef-Eide & W. Preil (Eds.), Liquid Culture Systems for in vitro Plant Propagation (pp. 95-116). Dordrecht: Springer.

Park, S. Y., Ahn, J. K., Lee, W. Y., Murthy, H. N., & Paek, K. Y. (2005). Mass production of Eleutherococcus koreanum plantlets via somatic embryogenesis from root cultures and accumulation of eleutherosides in regenerants. Plant Science, 168, 1221-1225.

Phillips, G. C., & Garda, M. (2019). Plant tissue culture media and practices: an overview. In Vitro Cellular & Developmental Biology - Plant, 55, 242-257|.

Puad, N. I. M., Sarji, M. A., Fathil, N. A. M., & Abduh, M. Y. (2018). Growth kinetics of Citrus suhuiensis cell suspension. Biological and Natural Resources Engineering Journal, 1, 1-13.

Satdive, R. K., Fulzele, D. P., & Eapen, S. (2007). Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and optimization. J. Biotechnology, 128, 281-289.

Shohael, A. M., Murthy, H. N., & Paek, K. Y. (2014). Pilot-scale culture of somatic embryos of Eleutherococcus senticosus in airlift bioreactors for the production of eleutherosides. Biotechnol Lett, 36, 1727-1733.

Singh, T. D., Singh, C. H., Nongalleima, K., Moirangthem, S., & Devi, H. S. (2013). Analysis of growth, yield potential and horticultural performance of conventional vs. micropropagated plants of Curcuma longa var. Lakadong. African Journal of Biotechnology, 12, 1604-1608.

Sinlaparaya, D., Duanghaklang, P., & Panichajakul, S. (2007). Optimization of cell growth and 20-hydroxyecdysone production in cell suspension culture of Vitex glabrata R.Br. Chinese Journal of Biotechnology, 23, 1033-1036.

Siverio, F., Marco-Noales, E., Bertolini, E., Teresani, G. R., Peñalver, J., Mansilla, P., . . . López, M. M. (2017). Survey of huanglongbing associated with ‘Candidatus Liberibacter’ species in Spain: analyses of Citrus plants and Trioza erytreae. Phytopathologia Mediterranea, 56, 98-110.

Suman, S. (2017). Plant tissue culture: A promising tool of quality material production with special reference to micropropagation of banana. Biochem. Cell. Arch., 17, 1-26.

Sun, D., Li, C., Qin, H., Zhang, Q., Yang, Y., & Ai, J. (2016). Somatic embryo cultures of Vitis amurensis Rpr. in air-lift bioreactor for the production of biomass and resveratrol. Journal of Plant Biology, 59, 427-434.

Takahashi, N., & Umeda, M. (2014). Cytokinin promote onset of endoreplication controlling cell cycle machinery Plant Signaling and Behavior, 9, 1-3.

Tapia, E., Sequida, A., Castro, A., Montes, C., Zamora, P., Lopez, R., . . . Prieto, H. (2009). Development of grapevine somatic embryogenesis using an airlift bioreactor as an efficient tool in the generation of transgenic plants. Journal of Biotechnology, 139, 95-101.

Thanh, N. T., Murthy, H. N., & Paek, K. Y. (2014). Optimization of ginseng cell culture in airlift bioreactors and developing the large-scale production system. Industrial Crops and Products, 60, 343-348. doi: https://doi.org/10.1016/j.indcrop.2014.06.036

Wang, G., Xu, C., Yan, S., & Xu, B. (2019). An efficient somatic embryo liquid culture system for potential use in large-scale and synchronic production of Anthurium andraeanum seedlings. Front. Plant Sci., 10, 1-9.

Werner, S., Maschke, R. W., Eibl, D., & Eibl, R. (2018). Bioreactor technology for sustainable production of plant cell-derived products In A. Pavlov & T. Bley (Eds.), Bioprocessing of plant in vitro systems, reference series in phytochemistry (pp. 423-432). New York: Springer International Publishing.

Widoretno, W., Indriyani, S., Martasari, C., & Hakin, R. (2017). Effects of sugar type and concentration on Batu 55 Mandarin (Citrus reticulate Blanco.) somatic embryo maturation AGRIVITA Journal of Agricultural Science, 39, 100-110




DOI: http://doi.org/10.17503/agrivita.v41i2.2237

Copyright (c) 2019 UNIVERSITAS BRAWIJAYA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.