Detecting Potential Biodiversity Hotspots for Development of REDD+ Safeguards Based on Analyses of Land-Cover Complexity in East Java, Indonesia

Yasa Palaguna Umar, Satoshi Ito, Yasushi Mitsuda, Ryoko Hirata, Tsuyoshi Kajisa, Hagus Tarno, Karuniawan Puji Wicaksono, Arifin Noor Sugiharto

Abstract


We examined a new method to detect the biodiversity hotspots in terms of complex patch mosaics at a regional scale in East Java, Indonesia, in order to develop the safeguard against further expansion of monocultures by REDD+. A land-cover map consisting of five major land-cover types (forest, agricultural land, bare land, water, and residential) was generated with a 30 m x 30 m resolution by the unsupervised classification of a Landsat8-OLI image. Shannon’s diversity index (H’) was calculated for each of 10.98 ha (11 x 11 pixels) landscape throughout the study area based on the dominance of the land-cover types by five calculation methods with different combinations of land-cover types. Then, the landscapes of upper 5 % in H’ was selected as the potential hotspots in terms of highly complex patch mosaics. Among the five potential hotspots, the calculation of H’ with four land-cover types (forest, agriculture, water, and bare land) was thought to be most suitable to set conservation targets at a regional scale, because the potential hotspots by this method showed aggregated distribution patterns, and was less sensitive to the small residential patches. While, no clear distribution trend was observed along the environmental gradients.

Keywords


Diversity index; Land-cover types; Patch mosaics; Satellite imagery

Full Text:

PDF

References


Arnold, A. E., & Lutzoni, F. (2007). Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology, 88(3), 541–549. crossref

Austin, K. G., Schwantes, A., Gu, Y., & Kasibhatla, P. S. (2019). What causes deforestation in Indonesia? Environmental Research Letters, 14(2), 1–10. crossref

Bawa, K. S., & Dayanandan, S. (1998). Causes of tropical deforestation and institutional constraints to conservation. In F. B. Goldsmith (Ed.), Tropical Rain Forest: A Wider Perspective, Vol. 10 (pp. 175–198). Dordrecht: Springer. crossref

Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology & Evolution, 18(4), 182–188. crossref

Billeter, R., Liira, J., Bailey, D., Bugter, R., Arens, P., Augenstein, I., … Edwards, P. J. (2008). Indicators for biodiversity in agricultural landscapes: a pan-European study. Journal of Applied Ecology, 45(1), 141–150. crossref

Cadman, T., Maraseni, T., Ma, H. O., & Lopez-Casero, F. (2017). Five years of REDD+ governance: The use of market mechanisms as a response to anthropogenic climate change. Forest Policy and Economics, 79, 8–16. crossref

Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho, B. S., Asner, G. P., … Rodrigues, H. O. (2012). Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proceedings of the National Academy of Sciences, 109(19), 7559–7564. crossref

Cimon-Morin, J. Ô., Darveau, M., & Poulin, M. (2013). Fostering synergies between ecosystem services and biodiversity in conservation planning: A review. Biological Conservation, 166, 144–154. crossref

de Oliveira, J. A. P., Doll, C. N. H., Balaban, O., Jiang, P., Dreyfus, M., Suwa, A., … Dirgahayani, P. (2013). Green economy and governance in cities: assessing good governance in key urban economic processes. Journal of Cleaner Production, 58, 138–152. crossref

Edwards, D. P., Hodgson, J. A., Hamer, K. C., Mitchell, S. L., Ahmad, A. H., Cornell, S. J., & Wilcove, D. S. (2010). Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conservation Letters, 3(4), 236–242. crossref

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., … Chen, J. (2013). Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7), 2607–2654. crossref

Gorenflo, L. J., Romaine, S., Mittermeier, R. A., & Walker-Painemilla, K. (2012). Co-occurrence of linguistic and biological diversity in biodiversity hotspots and high biodiversity wilderness areas. Proceedings of the National Academy of Sciences, 109(21), 8032–8037. crossref

Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959. crossref

Hoang, M. H., Do, T. H., Pham, M. T., van Noordwijk, M., & Minang, P. A. (2013). Benefit distribution across scales to reduce emissions from deforestation and forest degradation (REDD+) in Vietnam. Land Use Policy, 31, 48–60. crossref

Lund, J. F., Sungusia, E., Mabele, M. B., & Scheba, A. (2017). Promising change, delivering continuity: REDD+ as conservation fad. World Development, 89, 124–139. crossref

Magurran, A. E. (2004) Measuring biological diversity. Oxford: Blackwell.

Matsumoto, M. (2019). What is required for advancing REDD+? (Progress to date and challenges ahead). AGRIVITA Journal of Agricultural Science, 41(1), 1–9. crossref

Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Washington, DC: Island Press. Retrieved from pdf

Murray, J. P., Grenyer, R., Wunder, S., Raes, N., & Jones, J. P. G. (2015). Spatial patterns of carbon, biodiversity, deforestation threat, and REDD+ projects in Indonesia. Conservation Biology, 29(5), 1434–1445. crossref

Paoli, G. D., Wells, P. L., Meijaard, E., Struebig, M. J., Marshall, A. J., Obidzinski, K., … D’Arcy, L. (2010). Biodiversity conservation in the REDD. Carbon Balance and Management, 5, 7. crossref

Scharsich, V., Mtata, K., Hauhs, M., Lange, H., & Bogner, C. (2017). Analysing land cover and land use change in the Matobo National Park and surroundings in Zimbabwe. Remote Sensing of Environment, 194, 278–286. crossref

Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Araújo, M. B., Arnell, N. W., … Zierl, B. (2005). Ecosystem service supply and vulnerability to Global change in Europe. Science, 310(5752), 1333–1337. crossref

Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D. B., Oimoen, M. J., Zhang, Z., … Carabajal, C. (2011). ASTER Global digital elevation model version 2 – Summary of validation results. Federal Government Series (2nd ed.). Retrieved from website

Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., & Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, 31(1), 79–92. crossref

Turner, W. R., Brandon, K., Brooks, T. M., Costanza, R., da Fonseca, G. A. B., & Portela, R. (2007). Global conservation of biodiversity and ecosystem services. BioScience, 57(10), 868–873. crossref

Widhiono, I. (2015). Diversity of butterflies in four different forest types in Mount Slamet, Central Java, Indonesia. Biodiversitas, 16(2), 196–204. crossref




DOI: http://doi.org/10.17503/agrivita.v41i2.2010

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.