Detecting Potential Biodiversity Hotspots for Development of REDD+ Safeguards Based on Analyses of Land-Cover Complexity in East Java, Indonesia

Yasa Palaguna Umar, Satoshi Ito, Yasushi Mitsuda, Ryoko Hirata, Tsuyoshi Kajisa, Hagus Tarno, Karuniawan Puji Wicaksono, Arifin Noor Sugiharto


We examined a new method to detect the biodiversity hotspots in terms of complex patch mosaics at a regional scale in East Java, Indonesia, in order to develop the safeguard against further expansion of monocultures by REDD+. A land-cover map consisting of five major land-cover types (forest, agricultural land, bare land, water, and residential) was generated with a 30 m x 30 m resolution by the unsupervised classification of a Landsat8-OLI image. Shannon’s diversity index (H’) was calculated for each of 10.98 ha (11 x 11 pixels) landscape throughout the study area based on the dominance of the land-cover types by five calculation methods with different combinations of land-cover types. Then, the landscapes of upper 5 % in H’ was selected as the potential hotspots in terms of highly complex patch mosaics. Among the five potential hotspots, the calculation of H’ with four land-cover types (forest, agriculture, water, and bare land) was thought to be most suitable to set conservation targets at a regional scale, because the potential hotspots by this method showed aggregated distribution patterns, and was less sensitive to the small residential patches. While, no clear distribution trend was observed along the environmental gradients.


Diversity index; Land-cover types; Patch mosaics; Satellite imagery

Full Text:



Arnold, A. E., & Lutzoni, F. (2007). Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology, 88(3), 541–549.

Austin, K. G., Schwantes, A., Gu, Y., & Kasibhatla, P. S. (2019). What causes deforestation in Indonesia? Environmental Research Letters, 14(2), 1–10.

Bawa, K. S., & Dayanandan, S. (1998). Causes of tropical deforestation and institutional constraints to conservation. In F. B. Goldsmith (Ed.), Tropical Rain Forest: A Wider Perspective, Vol. 10 (pp. 175–198). Dordrecht: Springer.

Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology & Evolution, 18(4), 182–188.

Billeter, R., Liira, J., Bailey, D., Bugter, R., Arens, P., Augenstein, I., … Edwards, P. J. (2008). Indicators for biodiversity in agricultural landscapes: a pan-European study. Journal of Applied Ecology, 45(1), 141–150.

Cadman, T., Maraseni, T., Ma, H. O., & Lopez-Casero, F. (2017). Five years of REDD+ governance: The use of market mechanisms as a response to anthropogenic climate change. Forest Policy and Economics, 79, 8–16.

Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho, B. S., Asner, G. P., … Rodrigues, H. O. (2012). Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proceedings of the National Academy of Sciences, 109(19), 7559–7564.

Cimon-Morin, J. Ô., Darveau, M., & Poulin, M. (2013). Fostering synergies between ecosystem services and biodiversity in conservation planning: A review. Biological Conservation, 166, 144–154.

de Oliveira, J. A. P., Doll, C. N. H., Balaban, O., Jiang, P., Dreyfus, M., Suwa, A., … Dirgahayani, P. (2013). Green economy and governance in cities: assessing good governance in key urban economic processes. Journal of Cleaner Production, 58, 138–152.

Edwards, D. P., Hodgson, J. A., Hamer, K. C., Mitchell, S. L., Ahmad, A. H., Cornell, S. J., & Wilcove, D. S. (2010). Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conservation Letters, 3(4), 236–242.

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., … Chen, J. (2013). Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7), 2607–2654.

Gorenflo, L. J., Romaine, S., Mittermeier, R. A., & Walker-Painemilla, K. (2012). Co-occurrence of linguistic and biological diversity in biodiversity hotspots and high biodiversity wilderness areas. Proceedings of the National Academy of Sciences, 109(21), 8032–8037.

Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959.

Hoang, M. H., Do, T. H., Pham, M. T., van Noordwijk, M., & Minang, P. A. (2013). Benefit distribution across scales to reduce emissions from deforestation and forest degradation (REDD+) in Vietnam. Land Use Policy, 31, 48–60.

Lund, J. F., Sungusia, E., Mabele, M. B., & Scheba, A. (2017). Promising change, delivering continuity: REDD+ as conservation fad. World Development, 89, 124–139.

Magurran, A. E. (2004) Measuring biological diversity. Oxford: Blackwell.

Matsumoto, M. (2019). What is required for advancing REDD+? (Progress to date and challenges ahead). AGRIVITA Journal of Agricultural Science, 41(1), 1–9.

Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Washington, DC: Island Press. Retrieved from

Murray, J. P., Grenyer, R., Wunder, S., Raes, N., & Jones, J. P. G. (2015). Spatial patterns of carbon, biodiversity, deforestation threat, and REDD+ projects in Indonesia. Conservation Biology, 29(5), 1434–1445.

Paoli, G. D., Wells, P. L., Meijaard, E., Struebig, M. J., Marshall, A. J., Obidzinski, K., … D’Arcy, L. (2010). Biodiversity conservation in the REDD. Carbon Balance and Management, 5, 7.

Scharsich, V., Mtata, K., Hauhs, M., Lange, H., & Bogner, C. (2017). Analysing land cover and land use change in the Matobo National Park and surroundings in Zimbabwe. Remote Sensing of Environment, 194, 278–286.

Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Araújo, M. B., Arnell, N. W., … Zierl, B. (2005). Ecosystem service supply and vulnerability to Global change in Europe. Science, 310(5752), 1333–1337.

Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D. B., Oimoen, M. J., Zhang, Z., … Carabajal, C. (2011). ASTER Global digital elevation model version 2 – Summary of validation results. Federal Government Series (2nd ed.). Retrieved from

Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., & Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, 31(1), 79–92.

Turner, W. R., Brandon, K., Brooks, T. M., Costanza, R., da Fonseca, G. A. B., & Portela, R. (2007). Global conservation of biodiversity and ecosystem services. BioScience, 57(10), 868–873.

Widhiono, I. (2015). Diversity of butterflies in four different forest types in Mount Slamet, Central Java, Indonesia. Biodiversitas, 16(2), 196–204.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.