Parameters and Secondary Characters for Selection of Tolerance Rice Varieties under Stagnant Flooding Condition

Trias Sitaresmi, Willy B. Suwarno, Indrastuti A. Rumanti, Sintho W. Ardie, Hajrial Aswidinnoor


Determination of secondary characters during stagnant flooding (SF) is considered important for breeders as the selection criteria in developing SF rice tolerant varieties. Aims of this study were to find agronomical variation and to determine secondary traits that were related to SF tolerance among the rice varieties. Experiment was conducted at Indonesian Center for Rice Research in 2015. Ten rice genotypes were grown in RCBD with three replications under normal and gradual flooding conditions. Agronomic data were gathered and analysed using combined ANOVA, correlation, multiple linear regressions and genetic variability. Results showed that 92.3% variance of stress tolerance index (STI) were presented from a linear model involving weight of 100-grains, panicle length, stem diameter, intensity of leaf green color and stem length. Stem length, intensity of leaf green color, and panicle length had broad genetic variability and high heritability these characters were important criteria when selecting the traits under flowing stress. Number of productive tillers was correlated with grain yield under SF and highly heritable, thus considered as one of determining characters for stagnant flooding tolerance. Based on STIStd, Ciherang and INPARI 30 showed more adaptive performance, while IR 42 had the least when grown under 50-60 cm stagnant water depth.


Genetic variability; Long-term partial submergence; Secondary traits

Full Text:



Anandan, A., Kumar Pradhan, S., Kumar Das, S., Behera, L., & Sangeetha, G. (2015). Differential responses of rice genotypes and physiological mechanism under prolonged deepwater flooding. Field Crops Research, 172, 153–163. crossref

Baker, J. T., Allen Jr, L. H., & Boote, K. J. (1992). Response of rice to carbon dioxide and temperature. Agricultural and Forest Meteorology, 60(3–4), 153–166. crossref

Baker, J. T., Allen, L. H., & Boote, K. J. (1990). Growth and yield responses of rice to carbon dioxide concentration. The Journal of Agricultural Science, 115(3), 313–320. crossref

Collard, B. C. Y., Septiningsih, E. M., Das, S. R., Carandang, J. J., Pamplona, A. M., Sanchez, D. L., … Ismail, A. M. (2013). Developing new flood-tolerant varieties at the International Rice Research Institute (IRRI). Sabrao Journal of Breeding and Genetics, 45(1), 42–56. Retrieved from website

Djamhari, S. (2009). Penerapan teknologi pengelolaan air di wara lebak sebagai usaha peningkatan indeks tanam di Kabupaten Muara Enim. Jurnal Hidrosfir Indonesia, 4(1), 23–28. Retrieved from website

El-Hendawy, S., Sone, C., Ito, O., & Sakagami, J.-I. (2012). Differential growth response of rice genotypes based on quiescence mechanism under flash flooding stress. Australian Journal of Crop Science, 6(12), 1587–1597. Retrieved from pdf

Fehr, W. (1991). Principles of cultivar development: Theory and techniques. Agronomy Books 1. Macmillian Publishing Company. Retrieved from website

Fernández, G. C. J. (1992). Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on “Adaptation of Vegetables and other Food Crops in Temperature and Water Stress” (pp. 257–270). Taiwan. Retrieved from website

Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897–912. crossref

Gomez, A. K., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). Toronto, CA: John Wiley & Sons, Inc.

Hossain, A. B. S., Sears, R. G., Cox, T. S., & Paulsen, G. M. (1990). Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, 30(3), 622–627. crossref

Ismail, A. M., Johnson, D. E., Ella, E. S., Vergara, G. V., & Baltazar, A. M. (2012). Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment. AoB PLANTS, 2012, pls019. crossref

Kato, Y., Collard, B. C. Y., Septiningsih, E. M., & Ismail, A. M. (2014). Physiological analyses of traits associated with tolerance of long-term partial submergence in rice. AoB PLANTS, 6, plu058. crossref

Khera, P., Gangashetti, M. G., Singh, S., Ulaganathan, K., Shashidhar, H. E., & Freeman, W. H. (2009). Identification and genetic mapping of elongated uppermost internode gene ‘eui’ with microsatellite markers in rice (Oryza sativa L.). Journal of Plant Breeding and Crop Science, 1(10), 336–342. Retrieved from website

Kuanar, S. R., Ray, A., Sethi, S. K., Chattopadhyay, K., & Sarkar, R. K. (2017). Physiological basis of stagnant flooding tolerance in rice. Rice Science, 24(2), 73–84. crossref

Mackill, D. J., Ismail, A. M., Pamplona, A. M., Sanchez, D. L., Carandang, J. J., & Septiningsih, E. M. (2010). Stress tolerant rice varieties for adaptation to a changing climate. Crop, Environment & Bioinformatics, 7, 250–259. Retrieved from pdf

Mallik, S., Sen, S. N., Chatterjee, S. D., Nandi, S., Dutta, A., & Sarkarung, S. (2004). Sink improvement for deep water rice. Current Science, 87(8), 1043–1045. Retrieved from website

Miro, B., & Ismail, A. M. (2013). Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Frontiers in Plant Science, 4, 269. crossref

Nio, S. A., Siahaan, R., & Luding, D. P. M. (2019). Partial submergence tolerance in rice (Oryza sativa L.) cultivated in North Sulawesi at the vegetative phase. Pakistan Journal of Biological Sciences, 22(2), 95-102. crossref

Nugraha, Y., Hidayatun, N., Trisnaningsih, T., & Yuliani, D. (2017). Phenotypic performance of Ciherang SUB1 near isogenic line as an adaptive variety for flooding conditions. Indonesian Journal of Agricultural Science, 18(1), 7–16. crossref

Nugraha, Y., Vergara, G. V, Mackill, D. J., & Ismail, A. B. (2013). Genetic parameters of some characters and their correlation with rice grain yield in relation to the plant adaptability to semi-deep stagnant flooding condition. Jurnal Penelitian Pertanian Tanaman Pangan, 32(2), 74–82. Retrieved from website

PDSIP. (2017). Statistik iklim, organisme pengganggu tanaman dan dampak perubahan iklim 2014-2017. Jakarta, ID: Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal - Kementerian Pertanian. Retrieved from Iklim OPT dan DPI 2017/files/assets/downloads/publication.pdf

Raman, A., Verulkar, S. B., Mandal, N. P., Variar, M., Shukla, V. D., Dwivedi, J. L., … Kumar, A. (2012). Drought yield index to select high yielding rice lines under different drought stress severities. Rice, 5, 31. crossref

Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 21(6), 943–946. crossref

Septiningsih, E. M., Hidayatun, N., Sanchez, D. L., Nugraha, Y., Carandang, J., Pamplona, A. M., … Mackill, D. J. (2015). Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica, 202(2), 259–268. crossref

Singh, A., Septiningsih, E. M., Balyan, H. S., Singh, N. K., & Rai, V. (2017). Genetics, physiological mechanisms and breeding of flood-tolerant rice (Oryza sativa L.). Plant and Cell Physiology, 58(2), 185–197. crossref

Singh, S., Mackill, D. J., & Ismail, A. M. (2011). Tolerance of longer-term partial stagnant flooding is independent of the SUB1 locus in rice. Field Crops Research, 121(3), 311–323. crossref

Vergara, G. V., Nugraha, Y., Esguerra, M. Q., Mackill, D. J., & Ismail, A. M. (2014). Variation in tolerance of rice to long-term stagnant flooding that submerges most of the shoot will aid in breeding tolerant cultivars. AoB PLANTS, 6, plu055. crossref

Visscher, P. M., Hill, W. G., & Wray, N. R. (2008). Heritability in the genomics era--concepts and misconceptions. Nature Reviews Genetics, 9(4), 255–266. crossref

Voesenek, L. A. C. J., Rijnders, J. H. G. M., Peeters, A. J. M., van de Steeg, H. M., & de Kroon, H. (2004). Plant hormones regulate fast shoot elongation under water: From genes to communities. Ecology, 85(1), 16–27. crossref

Yullianida, Ardie, S. W., Suwarno, & Aswidinnoor, H. (2015). Respon dan produktivitas padi rawa terhadap cekaman rendaman stagnan untuk pengembangan di lahan rawa lebak. Jurnal Agronomi Indonesia, 43(1), 15–22. crossref

Zhu, G., Chen, Y., Ella, E. S., & Ismail, A. M. (2019). Mechanisms associated with tiller suppression under stagnant flooding in rice. Journal of Agronomy and Crop Science, 205(2), 235–247. crossref



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.