Effects of Slope Position on Soil Physico-chemical Characteristics Under Oil Palm Plantation in Wet Tropical Area, West Sumatra Indonesia
Abstract
Keywords
Full Text:
PDFReferences
An, S., Zheng, F., Zhang, F., Van Pelt, S., Hamer, U., & Makeschin, F. (2008). Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena, 75(3), 248–256. crossref
ASTM D5084-10. (2010). Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. West Conshohocken, PA: ASTM International. crossref
BAPPEDA. (2015). Rencana Kerja Pemerintah Daerah (RKPD) Kabupaten Dharmasraya Tahun 2016 [Local Government Work Plan, Dharmasraya District 2016]. Retrieved from PDF
Bautista-Cruz, A., Del Castillo, R. F., Etchevers-Barra, J. D., Gutiérrez-Castorena, M. del C., & Baez, A. (2012). Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. Forest Ecology and Management, 277, 74–80. crossref
Comte, I., Colin, F., Grünberger, O., Whalen, J. K., Widodo, R. H., & Caliman, J. P. (2015). Watershed-scale assessment of oil palm cultivation impact on water quality and nutrient fluxes: A case study in Sumatra (Indonesia). Environmental Science and Pollution Research, 22(10), 7676–7695. crossref
Eviati, & Sulaeman. (2009). Petunjuk teknis: Analisis kimia tanah, tanaman, air, dan pupuk (Edisi 2) [Technical instructions: Chemical analysis of soil, plants, water, and fertilizers (2nd ed.)]. Bogor, ID: Balai Penelitian Tanah.
Ezeaku, P. I., & Eze, F. U. (2014). Effect of land use in relation to slope position on soil properties in a semi-humid Nsukka area, Southeastern Nigeria. Journal Agricultural Research, 52(3), 369–381. Retrieved from PDF
Gartzia-Bengoetxea, N., Arbestain, M. C., Mandiola, E., & Martínez de Arano, I. (2011). Physical protection of soil organic matter following mechanized forest operations in Pinus radiate D.Don plantations. Soil Biology and Biochemistry, 43(1), 141–149. crossref
Guillaume, T., Damris, M., & Kuzyakov, Y. (2015). Losses of soil carbon by converting tropical forest to plantations: Erosion and decomposition estimated by δ13C. Global Change Biology, 21(9), 3548–3560. crossref
Gunarso, P., Hartoyo, M. E., Agus, F., & Killeen, T. J. (2013). Oil palm and land use change in Indonesia, Malaysia and Papua New Guinea. Reports from the Technical Panels of RSPOs 2nd Greenhouse Gas Working Group. Retrieved from website
Hakim, N., Alfina, R., Agustian, Hermansah, & Yulnafatmawita. (2014). Bacterial inoculants to increase the biomass and nutrient uptake of Tithonia cultivated as hedgerow plants in ultisols. Malaysian Journal of Soil Science, 18, 115–123. Retrieved from PDF
Kasno, A., & Subardja, D. (2010). Soil fertility and nutrient management on spodosol for oil palm. AGRIVITA Journal of Agricultural Science, 32(3), 285–292. Retrieved from website
Khan, F., Hayat, Z., Ahmad, W., Ramzan, M., Shah, Z., Sharif, M., … Hanif, M. (2013). Effect of slope position on physico-chemical properties of eroded soil. Soil and Environment, 32(1), 22–28. Retrieved from website
Liu, D., Huang, Y., An, S., Sun, H., Bhople, P., & Chen, Z. (2018). Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena, 162, 345–353. crossref
Llorente, M., Glaser, B., & Turrión, M. B. (2017). Effect of land use change on contents and distribution of monosacharides within density fractions of calcareous soil. Soil Biology and Biochemistry, 107, 260–268. crossref
Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F., & Hansen, M. C. (2014). Primary forest cover loss in Indonesia over 2000-2012. Nature Climate Change, 4(8), 730–735. crossref
Marín-Castro, B. E., Geissert, D., Negrete-Yankelevich, S., & Gómez-Tagle Chávez, A. (2016). Spatial distribution of hydraulic conductivity in soils of secondary tropical montane cloud forests and shade coffee agroecosystems. Geoderma, 283, 57–67. crossref
Minasny, B., & Hartemink, A. E. (2011). Predicting soil properties in the tropics. Earth-Science Reviews, 106(1–2), 52–62. crossref
Murtilaksono, K., Darmosarkoro, W., Sutarta, E. S., Siregar, H. H., Hidayat, Y., & Yusuf, M. A. (2011). Feasibility of soil and water conservation techniques on oil palm plantation. AGRIVITA, Journal of Agricultural Science, 33(1), 63–69. Retrieved from website
Negasa, T., Ketema, H., Legesse, A., Sisay, M., & Temesgen, H. (2017). Variation in soil properties under different land use types managed by smallholder farmers along the toposequence in southern Ethiopia. Geoderma, 290, 40–50. crossref
Petrenko, C., Paltseva, J., & Searle, S. (2016). Ecological impacts of palm oil expansion in Indonesia. Washington, DC. Retrieved from http://www.theicct.org/ecological-impacts-of-palm-oil-expansion-indonesia
Rosenani, A. B., Rovica, R., Cheah, P. M., & Lim, C. T. (2016). Growth performance and nutrient uptake of oil palm seedling in prenursery stage as influenced by oil palm waste compost in growing media. International Journal of Agronomy, 2016, 8. crossref
Sarker, J. R., Singh, B. P., Cowie, A. L., Fang, Y., Collins, D., Badgery, W., & Dalal, R. C. (2018). Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil and Tillage Research, 178, 209–223. crossref
Sohng, J., Singhakumara, B. M. P., & Ashton, M. S. (2017). Effects on soil chemistry of tropical deforestation for agriculture and subsequent reforestation with special reference to changes in carbon and nitrogen. Forest Ecology and Management, 389, 331–340. crossref
Su, Z.-A., Zhang, J.-H., & Nie, X.-J. (2010). Effect of soil erosion on soil properties and crop yields on slopes in the Sichuan Basin, China. Pedosphere, 20(6), 736–746. crossref
Tan, N. P., Wong, M. K., Yusuyin, Y., Abdu, A., Iwasaki, K., & Tanaka, S. (2014). Soil characteristics in an oil palm field, Central Pahang, Malaysia with special reference to micro sites under different managements and slope positions. Tropical Agriculture Development, 4(58), 146–154. crossref
Xue, Z., Cheng, M., & An, S. (2013). Soil nitrogen distributions for different land uses and landscape positions in a small watershed on Loess Plateau, China. Ecological Engineering, 60, 204–213. crossref
Yao, R. J., Yang, J. S., Zhang, T. J., Gao, P., Wang, X. P., Hong, L. Z., & Wang, M. W. (2014). Determination of site-specific management zones using soil physico-chemical properties and crop yields in coastal reclaimed farmland. Geoderma, 232–234, 381–393. crossref
Yu, Z., Zhang, J., Zhang, C., Xin, X., & Li, H. (2017). The coupling effects of soil organic matter and particle interaction forces on soil aggregate stability. Soil and Tillage Research, 174, 251–260. crossref
Yulnafatmawita, & Adrinal. (2014). Physical characteristics of ultisols and the impact on soil loss during soybean (Glycine max Merr) cultivation in a wet tropical area. AGRIVITA Journal of Agricultural Science, 36(1), 57–64. crossref
Zhu, H., Wu, J., Guo, S., Huang, D., Zhu, Q., Ge, T., & Lei, T. (2014). Land use and topographic position control soil organic C and N accumulation in eroded hilly watershed of the Loess Plateau. Catena, 120, 64–72. crossref
DOI: http://doi.org/10.17503/agrivita.v40i2.880
Copyright (c) 2018 UNIVERSITAS BRAWIJAYA

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.