Induced Mutation for Genetic Improvement in Black Rice Using Gamma-Ray

Edi Purwanto, Nandariyah Nandariyah, Suhadi Sapto Yuwono, Mercy Bientri Yunindanova


Black Rice is rice producing anthocyanin in high intensity and popularly consumed as functional food. Long harvesting age and low productivity are the inhibiting factors in black rice breeding. High plant crown potentially results in plant fall-down. Mutation induction is expected to be able to improve the character of black rice. Therefore, the objectives of this research were to get more early-ripening black rice mutant, with shorter plant crown and increase productivity by inducing mutation in three varieties of local black rice using gamma-ray radiation. This experiment employed three local varieties as the first factor comprised Cempo Ireng, Cempo Melik and Melik. The second factor was the gamma-ray radiation dose, consisting of 4 levels: without radiation, radiations at 100 Gy, 200 Gy and 300 Gy doses. The results indicated that Melik variety is very potential. Melik variety has shorter plant crown with a responsive character in number of tiller for higher productivity. Moreover, radiation significantly reduces the duration of flowering and harvesting. However, to achieve a more stable character and lower flowering and harvesting period, the radiation needs to be continued in the next generation. The doses of radiation produces a response that varies in both morphological and biochemical properties.


Black Rice; Gamma Ray; Induced Mutation

Full Text:



Ambavane, A. R., Sawardekar, S. V., Sawantdesai, S. A., & Gokhale, N. B. (2015). Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). Journal of Radiation Research and Applied Sciences, 8(1), 120–125.

Arwin, Mulyana, H. I., Tarmizi, Masrizal, Faozi, K., & Adie, M. (2012). Galur mutan harapan kedelai super genjah Q-298 dan 4-PSJ. Jurnal Ilmiah Aplikasi Isotop Dan Radiasi, 8(2), 107–116. Retrieved from

Budiman, B., Arisoesiloningsih, E., & Wibowo, R. B. E. (2012). Growth adaptation of two Indonesian black rice origin NTT cultivating in organic paddy field, Malang-East Java. Journal of Tropical Life Science, 2(3), 77–80.

Chen, P.-N., Kuo, W.-H., Chiang, C.-L., Chiou, H.-L., Hsieh, Y.-S., & Chu, S.-C. (2006). Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chemico-Biological Interactions, 163(3), 218–229.

El Sherif, F., Khattab, S., Ghoname, E., Salem, N., & Radwan, K. (2011). Effect of gamma irradiation on enhancement of some economic traits and molecular Changes in Hibiscus sabdariffa L. Life Science Journal, 8(3), 220–229.

El-Degwy, I. S. (2013). Mutation induced genetic variability in rice (Oryza sativa L.). Egyptian Journal of Agronomy, 35(2), 199–209.

Gangmei, T. P., & George, P. J. (2017). Black rice CV. ‘Chakhao A mubi’ (Oryza sativa L.) response to organic and inorganic sources of nutrients on growth, yield and grain protein content. Journal of Pharmacognosy and Phytochemistry, 6(4), 550–555. Retrieved from

Harding, S. S., Johnson, S. D., Taylor, D. R., Dixon, C. A., & Turay, M. Y. (2012). Effect of gamma rays on seed germination, seedling height, survival percentage and tiller production in some rice varieties cultivated in Sierra Leone. American Journal of Experimental Agriculture, 2(2), 247–255.

Haris, A., Abdullah, Bakhtiar, Subaedah, Aminah, & Jusoff, K. (2013). Gamma ray radiation mutant rice on local aged dwarf. Middle-East Journal of Scientific Research, 15(8), 1160–1164. Retrieved from

Hwang, J. E., Jang, D.-S., Lee, K. J., Ahn, J.-W., Kim, S. H., Kang, S.-Y., … Kim, J.-B. (2016). Identification of gamma ray irradiation-induced mutations in membrane transport genes in a rice population by TILLING. Genes & Genetic Systems, 91(5), 245–256.

Ichikawa, H., Ichiyanagi, T., Xu, B., Yoshii, Y., Nakajima, M., & Konishi, T. (2004). Antioxidant activity of anthocyanin extract from purple black rice. Journal of Medicinal Food, 4(4), 211–218.

Jang, H.-H., Park, M.-Y., Kim, H.-W., Lee, Y.-M., Hwang, K.-A., Park, J.-H., … Kwon, O. (2012). Black rice (Oryza sativa L.) extract attenuates hepatic steatosis in C57BL/6 J mice fed a high-fat diet via fatty acid oxidation. Nutrition & Metabolism, 9, 27.

Kaneda, I., Kubo, F., & Sakurai, H. (2006). Antioxidative compounds in the extracts of black rice brans. Journal of Health Science, 52(5), 495–511.

Kiong, A. L. P., Lai, A. G., Hussein, S., & Harun, A. R. (2008). Physiological responses of Orthosiphon stamineus plantles to gamma irradiation. American-Eurasian Journal of Sustainable Agriculture, 2(2), 135–149. Retrieved from

Kristamtini, Taryono, Basunanda, P., Murti, R. H., Supriyanta, Widyayanti, S., & Sutarno. (2012). Morphological of genetic relationships among black rice landraces from Yogyakarta. ARPN Journal of Agricultural and Biological Science, 7(12), 982–989. Retrieved from

Masruroh, F., Samanhudi, Sulanjari, & Yunus, A. (2016). Improvement of rice (Oryza sativa L.) var. Ciherang and Cempo Ireng productivity using gamma irradiation. Journal of Agricultural Science and Technology B, 6, 289–294.

Mustikarini, E. D., Ardiarini, N. R., Basuki, N., & Kuswanto, K. (2017). Selection strategy of drought tolerance of red rice mutant lines. AGRIVITA Journal of Agricultural Science, 39(1), 91–99.

Nakagawa, H. (2009). Induced mutations in plant breeding and biological researches in Japan. In Q. Y. Shu (Ed.), Induced Plant Mutations in the Genomics Era (pp. 51–58). Rome: Food and Agriculture Organization of the United Nations (FAO). Retrieved from

Oladosu, Y., Rafii, M. Y., Abdullah, N., Abdul Malek, M., Rahim, H. A., Hussin, G., … Kareem, I. (2014). Genetic variability and selection criteria in rice mutant lines as revealed by quantitative traits. The Scientific World Journal, 2014(190531), 1–12.

Pandey, P., Anurag, P., Tiwari, D. K., Yadav, S. K., & Kumar, B. (2009). Genetic variability, diversity and association of quantitative traits with grain yield in rice (Oryza sativa L.). Journal of Bio-Science, 17, 77–82.

Piri, I., Babayan, M., Tavassoli, A., & Javaheri, M. (2011). The use of gamma irradiation in agriculture. African Journal of Microbiology Research, 5(32), 5806–5811.

Sasikala, R., & Kalaiyarasi, R. (2010). Sensitivity of rice varieties to gamma irradiation. Electronic Journal of Plant Breeding, 1(4), 885–889. Retrieved from

Shah, T. M., Atta, B. M., Mirza, J. I., & Haq, M. A. (2012). Radio-sensitivity of various chickpea genotypes in M1 generation II-field studies. Pakistan Journal of Botany, 44(2), 631–634. Retrieved from

Sompong, R., Siebenhandl-Ehn, S., Linsberger-Martin, G., & Berghofer, E. (2011). Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chemistry, 124(1), 132–140.

Sulandjari, & Yunindanova, M. B. (2018). Application of Azolla and intermittent irrigation to improve the productivity and nutrient contents of local black rice variety. IOP Conference Series: Earth and Environmental Science, 142, 012032.

Sumarji. (2015). Diversity of strain evaluation three rice (Oryza sativa) fenotipe gamma ray irradiated the results of growth and production. International Journal of Advances in Engineering & Technology, 8(1), 1889–1900. Retrieved from

Wahdah, R., Langai, B. F., & Sitaresmi, T. (2012). Keragaman karakter varietas lokal padi pasang surut Kalimantan Selatan. Jurnal Penelitian Pertanian Tanaman Pangan, 31(3), 158–165. Retrieved from

Warman, B., Suliansyah, I., Swasti, E., Syarif, A., & Alfi, H. (2015). Selection and semi-dwarf allele mutants segregation pattern as the result of gamma ray irradiation of West Sumatera black rice. International Journal on Advanced Science, Engineering and Information Technology, 5(5), 362–365.

Yuwono, S. S., & Sutoyo. (2017). Early growth performance some varieties of black rice (Oryza sativa L.) irradiated using gamma ray. International Journal of Advances in Engineering & Technology, 10(2), 145–153. Retrieved from

Zhan, X., Sun, B., Lin, Z., Gao, Z., Yu, P., Liu, Q., … Cao, L. (2015). Genetic mapping of a QTL controlling source-sink size and heading date in rice. Gene, 571(2), 263–270.

Zhang, H., Chen, Y., Chen, J., Zhu, Y., Huang, D., Fan, Y., & Zhuang, J. (2015). Mapping of qTGW1.1, a quantitative trait locus for 1000-grain weight in rice (Oryza sativa L.). Rice Science, 22(1), 9–15.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.