Effect of Biochar on Peat Soil Fertility and NPK Uptake by Corn

Eni Maftu'ah, Dedi Nursyamsi

Abstract


This study aimed to investigate the biochar effect on peat soil fertility and uptake of nitrogen, phosphor, and potassium by corn plants. The experiment was conducted at a greenhouse in the Indonesian Swampland Agriculture Research Institute (ISARI), Banjarbaru, South Kalimantan, from June to September 2014. The peat soil sample was collected from the village of Kalampangan, Palangkaraya, Central Kalimantan. The treatment consisted of four types of biochar, namely coconut shell, palm midrib, Galam stem (Melaleuca leucadendron), rice husk and five rates of biochar i.e. 0, 2, 4, 8 and 16 t ha-1. Biochar was analyzed in total C, P, K, Ca, Mg, Fe, Si, ash content, pH and CEC, also initial soil sample was analyzed  pH, EC, organic C, total N, P, available P, exchangeable K, Ca, Mg, H, Cu, Zn, and total acidity were measured. The application of biochar changed peat soil properties including pH, available P, exchangeable K, nutrient uptake and the dry weight (i.e root and shoot). The type of biochar significantly affect the exchangeable K in peat soil and nutrient uptake. The highest exchangeable K and NPK uptake by corn showed by the coconut shell biochar at dose 4 t/ha.

Keywords


biochar; corn; NPK uptake; peatland; soil fertility

Full Text:

PDF

References


Agblevor, F. A., Beis, S., Kim, S. S., Tarrant, R., & Mante, N. O. (2010). Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Management, 30(2), 298–307. crossref

Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543(Part A), 295–306. crossref

Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156–170. crossref

Amonette, J., & Joseph, S. (2009). Characteristics of biochar: Micro chemical properties. In: J. Lehmann, & S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology (pp. 33-52). London: Earthscan.

Anshari, G. Z., Afifudin, M., Nuriman, M., Gusmayanti, E., Arianie, L., Susana, R., … Rafiastanto, A. (2010). Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences, 7, 3403–3419. crossref

Banach, A. M., Banach, K., Peters, R. C. J. H., Jansen, R. H. M., Visser, E. J. W., Stȩpniewska, Z., … Lamers, L. P. M. (2009). Effects of long-term flooding on biogeochemistry and vegetation development in floodplains; a mesocosm experiment to study interacting effects of land use and water quality. Biogeosciences, 6, 1325–1339. crossref

Bohn, H. L., Mcneal, B. L., & O'connor, G. A. (2001). Soil chemistry (3rd ed.). New York, USA: John Wiley and Sons.

Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., & Brown, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy, 28(3), 386–396. crossref

Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428. crossref

Cha, J. S., Park, S. H., Jung, S. C., Ryu, C., Jeon, J. K., Shin, M. C., & Park, Y. K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–15. crossref

Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. In: J. Lehmann, & S. Joseph (Eds.), Biochar for environmental management: Science and technology (pp. 13-32). London: Earthscan.

Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653. crossref

Grunth, N. L., Askaer, L., & Elberling, B. (2008). Oxygen depletion and phosphorus release following flooding of a cultivated wetland area in Denmark. Geografisk Tidsskrift, 108(2), 17–25. crossref

Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment, 206, 46–59. crossref

He, L. L., Zhong, Z. K., & Yang, H. M. (2017). Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. Journal of Integrative Agriculture, 16(3), 704–712. crossref

Kern, J., Tammeorg, P., Shanskiy, M., Sakrabani, R., Knicker, H., Kammann, C., … Glaser, B. (2017). Synergistic use of peat and charred material in growing media – an option to reduce the pressure on peatlands? Journal of Environmental Engineering and Landscape Management, 25(2), 160–174. crossref

Kizito, S., Wu, S., Kipkemoi Kirui, W., Lei, M., Lu, Q., Bah, H., & Dong, R. (2015). Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of the Total Environment, 505, 102–112. crossref

Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & Singh, B. (2011). Biochar application to soil. Agronomic and environmental benefits and unintended consequences. Advances in Agronomy, 112, 103–143. crossref

Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3–4), 436–442. crossref

Lakitan, B., Alberto, A., Lindiana, L., Kartika, K., Herlinda, S., & Kurnianingsih, A. (2018). The benefits of biochar on rice growth and yield in tropical riparian wetland, South Sumatra, Indonesia. Chiang Mai University Journal of Natural Sciences, 17(2), 111–126. crossref

Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478. crossref

Liu, W. J., Li, W. W., Jiang, H., & Yu, H. Q. (2017). Fates of chemical elements in biomass during its pyrolysis. Chemical Reviews, 117(9), 6367–6398. crossref

Maftuah, E., & Indrayati, L. (2013). The use of biochar for improve soil properties and growth of paddy in peatland. AGRIVITA Journal of Agricultural Science, 35(3), 290–295. crossref

Méndez, A., Paz-Ferreiro, J., Gil, E., & Gascó, G. (2015). The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Scientia Horticulturae, 193, 225–230. crossref

Nguyen, D. H., Scheer, C., Rowlings, D. W., & Grace, P. R. (2016). Rice husk biochar and crop residue amendment in subtropical cropping soils: effect on biomass production, nitrogen use efficiency and greenhouse gas emissions. Biology and Fertility of Soils, 52(2), 261–270. crossref

Peng, Y., Niu, J., Peng, Z., Zhang, F., & Li, C. (2010). Shoot growth potential drives N uptake in maize plants and correlates with root growth in the soil. Field Crops Research, 115(1), 85–93. crossref

Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3), 271–284. crossref

Reddy, K. R., & Delaune, R. D. (2008). Biogeochemistry of wetlands: Science and applications. Boca Raton: CRC Press. crossref

Ritung, S., Wahyunto, & Nugroho, K. (2012, May 4). Karakteristik dan sebaran lahan gambut di Sumatera, Kalimantan dan Papua. Paper presented in National Seminar of Sustainable Peatland Management Proceedings, Bogor. Bogor: Balai Besar Litbang Sumberdaya Lahan Pertanian.

Sapek, A., Sapek, B., Chrzanowski, S., & Urbaniak, M. (2009). Nutrient mobilisation and losses related to the groundwater level in low peat soils. International Journal of Environment and Pollution, 37(4), 398–408. crossref

SAS Institute. (2003). SAS/stat user’s guide, Version 9.1.3. Carry, North Carolina, USA: SAS Institute Inc.

Steiner, C., Das, K. C., Melear, N., & Lakly, D. (2010). Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environment Quality, 39(4), 1236–1242. crossref

Sukartono, Utomo, W. H., Kusuma, Z., & Nugroho, W. H. (2011). Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia. Journal of Tropical Agriculture, 49(0), 47–52. Retrieved from crossref

Tan, K. H. (2010). Principles of soil chemistry (4th ed.). Boca Raton: CRC Press.

Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. crossref

Utami, S. H. N., Maas, A., Radjagukguk, B., & Purwanto, B. H. (2009). Sifat fisik, kimia dan FTIR spektrofotometri gambut hidrofobik Kalimantan Tengah. Jurnal Tanah Tropika, 14(2), 159–166. Retrieved from pdf

Yeo, A., & Flowers, T. (Eds.). (2007). Plant solute transport. Oxford: Blackwell Publishing. crossref

Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., & Zhang, X. (2012). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 351(1–2), 263–275. crossref

Zhao, L., Cao, X., Mašek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, 1–9. crossref

Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 227, 98–115. crossref




DOI: http://doi.org/10.17503/agrivita.v41i1.854

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.