Efficient Strategies for Elimination of Phenolic Compounds During DNA Extraction from Roots of Pistacia vera L.
Abstract
Optimization of DNA extraction protocols for plant tissues and including endophytic microorganisms is a critical step of advanced plant-microbe interaction in agricultural studies. Pistachio (Pistacia vera L.) root tissue contains high levels of polyphenols have been known as major extract contaminants and inhibitors of enzymatic activities during amplification. The present study aimed to develop reliable strategies to purify DNA from Pistachio root samples. Inhibiting substances were removed from DNA through a process including extraction with hot detergent contains SDS-Tris- EDTA, AlNH4(SO4)2.12H2O as chemical coagulating factor and CTAB-NaCl. Following typically organic extraction/alcohol precipitation, denaturing agarose electrophoresis performed to purify probable remain contaminants. The purified DNA was enough free of polyphenols based upon loss of color and spectral quality (260/230>1.6) and efficiently amplified during polymerase chain reaction particularly in the present of GC-clamp primers. This method proved well with detection of Glomus sp. (arbuscular mycorrhiza fungi) associated with Pistacia vera L. using denaturing gradient gel electrophoresis (DGGE).
Keywords
Full Text:
PDFReferences
Abu Almakarem, A. S., Heilman, K. L., Conger, H. L., Shtarkman, Y. M., & Rogers, S. O. (2012). Extraction of DNA from plant and fungus tissues in situ. BMC Research Notes, 5, 266. crossref
Bakken, L. R., F & Rostegård, Å. (2006). Nucleic acid extraction from soil. In P. Nannipieri & K. Smalla (Eds.), Nucleic acids and proteins in soil – Soil biology vol.8 (pp. 49-73). Berlin: Springer.
Bielski, B. H. J. (1982). Chemistry of ascorbic acid radicals. In P. A. Seib & B. M. Tolbert (Eds.), Ascorbic acid: Chemistry, metabolism, and uses (pp. 81-100). Washington, USA: American Chemical Society. crossref
Borse, T., Joshi, P., & Chaphalkar, S. (2011). Biochemical role of ascorbic acid during the extraction of nucleic acids in polyphenol rich medicinal plant tissues. Journal of Plant Molecular Biology and Biotechnology, 2(2), 1–7. Retrieved from https://www.researchgate.net/publication/268266186_Biochemical_Role_of_Ascorbic_acid_during_the_Extraction_of_Nucleic_Acids_in_Polyphenol_Rich_Medicinal_Plant_Tissues website
Braid, M. D., Daniels, L. M., & Kitts, C. L. (2003). Removal of PCR inhibitors from soil DNA by chemical flocculation. Journal of Microbiological Methods, 52(3), 389–393. crossref
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838. crossref
Carrier, G., Santoni, S., Rodier-Goud, M., Canaguier, A., de Kochko, A., Dubreuil-Tranchant, C., … le Cunff, L. (2011). An efficient and rapid protocol for plant nuclear DNA preparation suitable for next generation sequencing methods. American Journal of Botany, 98(1), 13–15. crossref
Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113–116. crossref
Gadkar, V. J., & Filion, M. (2013). Quantitative real-time polymerase chain reaction for tracking microbial gene expression in complex environmental matrices. Current Issues in Molecular Biology, 15, 45–58. Retrieved from http://www.caister.com/cimb/v/v15/45.pdf PDF
Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10), 463–471. crossref
Healey, A., Furtado, A., Cooper, T., & Henry, R. J. (2014). Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods, 10, 21. crossref
Kasem, S., Rice, N., & Henry, R. J. (2008). DNA extraction from plant tissue. In R. J. Henry (Ed.), Plant genotyping II: SNP technology (pp. 219-271). Oxfordshire, UK: CAB International.
Khanuja, S. P. S., Shasany, A. K., Darokar, M. P., & Kumar, S. (1999). Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Molecular Biology Reporter, 17(1), 1–7. crossref
Lawrence, J. R., Chenier, M. R., Roy, R., Beaumier, D., Fortin, N., Swerhone, G. D., .... Greer, C. W. (2004). Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities. Applied and Environmental Microbiology, 70(7), 4326-4339. crossref
Liang, Z., Drijber, R. A., Lee, D. J., Dwiekat, I. M., Harris, S. D., & Wedin, D. A. (2008). A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil. Soil Biology and Biochemistry, 40(4), 956–966. crossref
Liao, Z., Chen, M., Guo, L., Gong, Y., Tang, F., Sun, X., & Tang, K. (2004). Rapid isolation of high-quality total RNA from taxus and ginkgo. Preparative Biochemistry & Biotechnology, 34(3), 209–214. crossref
Manoj, K., Tushar, B., & Sushama, C. (2007). Isolation and purification of genomic DNA from black plum (Eugenia jambolana Lam.) for analytical applications. International Journal of Biotechnology & Biochemistry, 3, 49-55. Retrieved from https://www.thefreelibrary.com/Isolation+and+purification+of+genomic+DNA+from+Black+Plum+%28Eugenia...-a0172131886 website
Marulanda, A., Azcón, R., & Ruiz-Lozano, J. M. (2003). Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiologia Plantarum, 119(4), 526–533. crossref
Marulanda, A., Porcel, R., Barea, J. M., & Azcón, R. (2007). Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus Species. Microbial Ecology, 54(3), 543–552. crossref
Moazzam Jazi, M., Rajaei, S., & Seyedi, S. M. (2015). Isolation of high quality RNA from pistachio (Pistacia vera L.) and other woody plants high in secondary metabolites. Physiology and Molecular Biology of Plants, 21(4), 597–603. crossref
Nair, D. N., & Padmavathy, S. (2014). Impact of endophytic microorganisms on plants, environment and humans. The Scientific World Journal, 2014, 1–11. crossref
Newman, M. M., Feminella, J. W., & Liles, M. R. (2010). Purification of genomic DNA extracted from environmental sources for use in a polymerase chain reaction. Cold Spring Harbor Protocols, 2010(2), 1–16. crossref
Peterson, D. G., Boehm, K. S., & Stack, S. M. (1997). Isolation of milligram quantities of nuclear DNA from tomato (Lycopersicon esculentum), A plant containing high levels of polyphenolic compounds. Plant Molecular Biology Reporter, 15(2), 148–153. crossref
Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15(1), 8–15. crossref
Porras-Alfaro, A., Herrera, J., Sinsabaugh, R. L., Odenbach, K. J., Lowrey, T., & Natvig, D. O. (2008). Novel root fungal consortium associated with a dominant desert grass. Applied and Environmental Microbiology, 74(9), 2805–2813. crossref
Rajaei, S. M., Niknam, V., Seyedi, S. M., Ebrahimzadeh, H., & Razavi, K. (2009). Contractile roots are the most sensitive organ in Crocus sativus to salt stress. Biologia Plantarum, 53, 523. crossref
Reinhold-Hurek, B., & Hurek, T. (2011). Living inside plants: Bacterial endophytes. Current Opinion in Plant Biology, 14(4), 435–443. crossref
Rock, C., Alum, A., & Abbaszadegan, M. (2010). PCR inhibitor levels in concentrates of biosolid samples predicted by a new method based on excitation-emission matrix spectroscopy. Applied and Environmental Microbiology, 76(24), 8102–8109. crossref
Rodrigues, S. M., Soares, V. L., de Oliveira, T. M., Gesteira, A. S., Otoni, W. C., & Costa, M. G. (2007). Isolation and purification of RNA from tissues rich in polyphenols, polysaccharides, and pigments of annatto (Bixa orellana L.). Molecular Biotechnology, 37(3), 220–224. crossref
Sahu, S. K., Thangaraj, M., & Kathiresan, K. (2012). DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Molecular Biology, 2012, 1–6. crossref
Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors - occurrence, properties and removal. Journal of Applied Microbiology, 113(5), 1014–1026. crossref
Stewart, E. J. (2012). Growing unculturable bacteria. Journal of Bacteriology, 194(16), 4151–4160. crossref
Tkacz, A., & Poole, P. (2015). Role of root microbiota in plant productivity. Journal of Experimental Botany, 66(8), 2167–2175. crossref
Wang, F., & Liu, R. (2001). A preliminary survey of arbuscular mycorrhizal fungi in saline-alkaline soil of the Yellow River Delta. Chinese Biodiversity, 9(4), 389-392. Retrieved from http://europepmc.org/abstract/cba/354910 website
Wu, Q.-S., Zou, Y.-N., Xia, R.-X., & Wang, M.-Y. (2007). Five Glomus species affect water relations of Citrus tangerine during drought stress. Botanical Studies, 48, 147–154. Retrieved from https://ejournal.sinica.edu.tw/bbas/content/2007/2/Bot482-03.pdf PDF
Zhang, J., & Stewart, J. M. (2000). Economical and rapid method for extracting cotton genomic DNA. The Journal of Cotton Science, 4, 193–201. Retrieved from https://www.researchgate.net/publication/228484221_Economical_and_rapid_method_for_extracting_cotton_genomic_DNA website
DOI: http://doi.org/10.17503/agrivita.v39i3.734
Copyright (c) 2017 UNIVERSITAS BRAWIJAYA
License URL: https://creativecommons.org/licenses/by-nc/4.0/