Genetic Diversity of Indonesian Physic Nut (J. curcas) Based on Molecular Marker

Darmawan Saptadi, Rr. Sri Hartati, Asep Setiawan, Bambang Heliyanto, Sudarsono Sudarsono


Various reports of molecular genetic diversity evaluation of physic nut (J. curcas) have given inconsistent results. Part of the reasons were because of the used of unrealiable markers. This study was conducted to evaluate genetic diversity of Indonesian physic nut germplasm using four types of molecular markers (RAPD, ISSR, SSR and SCAR markers). Twenty four J. curcas accessions planted in Pakuwon, Sukabumi, with various phenotypes were evaluated. Twenty eight SSR marker loci yielded monomorphic allele pattern and indicated that the evaluated accessions probably were all genetically homogeneous for the respective loci. Eight RAPD and 4 ISSR primers out of the total 31 tested primers produced scoreable markers and some (i.e. UBC 873, OPG 17, OPP 03 and OPQ 11 primers) generated polymorphics markers. Genetic similarity coefficiens among evaluated accessions ranged from 0.6 to 1.0 with a population mean of 0.9 indicating low diversity and narrow genetic background among accessions in all populations. Therefore, breeding program utilizing such population would only result in low genetic gain. Based on the evaluated SCAR markers, all accessions belonged to the non-toxic Mexican type of physic nut. This information is important inputs for designing future physic nut breeding strategies in Indonesia.


germplasm characterization; molecular analysis; SSR markers

Full Text:



Ajambang, W., Sudarsono, Asmono, D., & Toruan, N. (2012). Microsatellite markers reveal Cameroon’s wild oil palm population as a possible solution to broaden the genetic base in the Indonesia-Malaysia oil palm breeding programs. African Journal of Biotechnology, 11(69), 13244-13249. crossref

Basha, S. D., & Sujatha, M. (2007). Inter and intra-population variability of J. curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica, 156(3), 375–386. crossref

Cai, Y., Sun, D., Wu, G., & Peng, J. (2010). ISSR-based genetic diversity of J. curcas germplasm in China. Biomass and Bioenergy, 34(12), 1739–1750. crossref

Hartati, R. R. S. (2008). Variasi tanaman jarak pagar dari satu sumber benih satu genotipe [Variation of physic nut from one seed source one genotype]. InfoTek Jarak Pagar, 3(1), 1.

Hartati, R. R. S., & Sudarsono. (2013). Pewarisan sifat hermaprodit dan kontribusinya terhadap daya hasil pada jarak pagar (J. curcas L.) [Inheritance of hermaphrodite character and its contribution to the yield of physic nut (J. curcas L.)]. Jurnal Penelitian Tanaman Industri, 19(3), 117-129.

Hartati, R. R. S., & Sudarsono. (2014). Inbreeding depression pada progeni hasil penyerbukan sendiri dan outbreeding depression pada hasil penyerbukan silang jarak pagar (J. curcas L.) [Inbreeding depression in selfed and outbreeding depression in crossed progeny arrays of physic nut (J. curcas L.)]. Jurnal Penelitian Tanaman Industri, 20(2), 65-76.

Hartati, R. R. S., & Sudarsono. (2015). Daya gabung dan heterosis karakter vegetatif, generatif, dan daya hasil jarak pagar (J. curcas L.) menggunakan analisis dialel [Combining ability and heterosis of vegetative, generative, and yield potential characters of physic nut (J. curcas L.) using diallel analysis]. Jurnal Penelitian Tanaman Industri, 21(1), 9-16. crossref

Hartati, R. R. S., Setiawan, A., Heliyanto, B., Pranowo, D., & Sudarsono. (2009). Keragaan morfologi dan hasil 60 individu jarak pagar (J. curcas L.) terpilih di kebun percobaan Pakuwon Sukabumi [Morphological and yield character of 60 selected individuals of J. curcas L. in the experimental field, Pakuwon Sukabumi]. Jurnal Penelitian Tanaman Industri, 15(4), 152-161.

Heller, J. (1996). Physic nut: J. curcas L. Promoting the conservation and use of underutilized and neglected crops. 1. Rome, IT: International Plant Genetic Resources Institute.

Kaushik, N., Kumar, K., Kumar, S., Kaushik, N., & Roy, S. (2007). Genetic variability and divergence studies in seed traits and oil content of Jatropha (J. curcas L.) accessions. Biomass and Bioenergy, 31(7), 497-502. crossref

Kumar, A., & Sharma, S. (2008). An evaluation of multipurpose oil seed crop for industrial uses (J. curcas L.): A review. Industrial Crops and Products, 28(1), 1–10. crossref

Kustanto, H., Basuki, N., Sugiharto, A. N., & Kasno, A. (2012). Genetic diversities in the sixth - generation of selection (S6) of some inbred lines of maize based on the phenotypic characters and SSR. AGRIVITA Journal of Agricultural Science, 34(2), 127-135. crossref

Makkar, H. P. S., Becker, K., Sporer, F., & Wink, M. (1997). Studies on nutritive potential and toxic constituents of different provenances of J. curcas. Journal of Agricultural and Food Chemistry, 45(8), 3152–3157. crossref

Montes, L. R., Azurdia, C., Jongschaap, R. E. E., van Loo, E. N., Barillas, E., Visser, R., & Mejia, L. (2008). Global evaluation of genetic variability in J. curcas. Wageningen, NL: Wageningen UR Plant Breeding. Retrieved from website

Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76(10), 5269–5273. Retrieved from PDF

Ou, W. J., Wang, W. Q., & Li, K. M. (2009). Molecular genetic diversity analysis of 120 accessions of J. curcas L. germplasm. Chinese Journal of Tropical Crops, 30, 284-292.

Pamidimarri, D. V. N. S., Meenakshi, Sarkar, R., Boricha, G., & Reddy, M. P. (2009). A simplified method for extraction of high quality genomic DNA from J. curcas for genetic diversity and molecular marker studies. Indian Journal of Biotechnology, 8(2), 187–192. Retrieved from

Perrier, X., & Jacquemoud-Collet, J. P. (2006). DARwin software. Retrieved from website

Popluechai, S., Breviario, D., Mulpuri, S., Makkar, H. P. S., Raorane, M., Reddy, A. R., … Kohli, A. (2009). Narrow genetic and apparent phenetic diversity in J. curcas: Initial success with generating low phorbol ester interspecific hybrids. Nature Precedings, 1–44. Retrieved from PDF

Ranade, S. A., Srivastava, A. P., Rana, T. S., Srivastava, J., & Tuli, R. (2008). Easy assessment of diversity in J. curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass and Bioenergy, 32(6), 533–540. crossref

Rohlf, F. J. (1998). NTSYSpc Numerical taxonomy and multivariate analysis system: version 2.0 user guide. New York, USA: Applied Biostatistics Inc.

Rosado, T. B., Laviola, B. G., Faria, D. A., Pappas, M. R., Bhering, L. L., Quirino, B., & Grattapaglia, D. (2010). Molecular markers reveal limited genetic diversity in a large germplasm collection of the biofuel crop J. curcas L. in Brazil. Crop Science, 50, 2372–2382. crossref

Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. New York, USA: Cold Spring Harbor Laboratory Press.

Saptadi, D., Hartati, R. R. S., Setiawan, A., Heliyanto, B., & Sudarsono. (2011). Pengembangan marka simple sequence repeat untuk Jatropha spp. [Development of simple sequence repeat markers for Jatropha spp.]. Jurnal Penelitian Tanaman Industri, 17(4), 140-149.

Sudarmo, H., Heliyanto, B., Suwarso, & Sudarmadji. (2007). Aksesi potensial jarak pagar (J. curcas L.) [Potential accessions of physic nut (J. curcas L)]. In Jatropha technology status. Paper presented at the National Workshop II, Bogor, 29 November 2006 (pp. 111-114). Bogor, ID: Indonesian Center for Estate Crops Research and Development.

Sun, Q. B., Li, L. F., Li, Y., Wu, G. J., & Ge, X. J. (2008). SSR and AFLP markers reveal low genetic diversity in the biofuel plant J. curcas in China. Crop Science, 48(5), 1865–1871. crossref

Surwenshi, A., Kumar, V., Shanwad, U. K., & Jalageri, B. R. (2011). Critical review of diversity in J. curcas for crop improvement: A candidate biodiesel crop. Research Journal of Agricultural Sciences, 2(2), 193-198. Retrieved from website

Sutanto, A., Hermanto, C., Sukma, D., & Sudarsono. (2013). Pengembangan marka SNAP berbasis resistance gene analogue pada tanaman pisang (Musa spp.) [Development of SNAP marker based on resistance gene analogue genimic sequences in banana (Musa spp.)]. Jurnal Hortikultura, 23(4), 300-309. crossref

Tatikonda, L., Wani, S. P., Kannan, S., Beerelli, N., Sreedevi, T. K., Hoisington, D. A., … Varshney, R. K. (2009). AFLP-based molecular characterization of an elite germplasm collection of J. curcas L., a biofuel plant. Plant Science, 176(4), 505–513. crossref

Wen, M., Wang, H., Xia, Z., Zou, M., Lu, C., & Wang, W. (2010). Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity in J. curcas L. BMC Research Notes, 3, 1–8. crossref

Zhang, Z. Y., Guo, X. L., Liu, B. Y., Tang, L., & Chen, F. (2011). Genetic diversity and genetic relationship of J. curcas between China and Southeast Asian revealed by amplified fragment length polymorphisms. African Journal of Biotechnology, 10(15), 2825–2832. crossref

Zulhermana, Sudarsono, Asmono, D., & Yulismawati. (2010). Intra- and inter-population genetic diversity of oil palm (Elaeis guineensis Jacq.) pisifera clones originated from Nigeria based on SSR markers analysis. Paper presented at International Oil Palm Conference (IOPC) 2010, Yogyakarta (pp. 1-8). Retrieved from


Copyright (c) 2017 AGRIVITA Journal of Agricultural Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.