THE APPLICATION OF Trichoderma viride STRAIN FRP 3 FOR BIODEGRADATION OF GLYPHOSATE HERBICIDE IN CONTAMINATED LAND
Abstract
In this current study, we observed Trichoderma viride strain FRP3 capability for biodegradation of glyphosate on contaminated land in Indonesia. There were two blank plots that have been involved as representatives of indigenous fungal, that prepared as control (non-contaminated soil) and P1 (GP-contaminated soil) while the treatments were represented by two plots. Plot 2 (P2) was introduced with conidia suspension of Trichoderma viride strain FRP3 one time application, and plot 3 (P3) was introduced with conidia suspension of Trichoderma viride FRP3 two time applications. At the end of observation, the CFU of two times application was the highest with CFU of 15.97 x 106 gr-1 soil. The CFU of P3 was corresponding to 45% higher than P2 (8.83 x 106 gr-1 soil). The CFU of GP-contaminated soil without conidia suspension application had 0.66 x 106 gr-1soils, only 0.7% and 0.4% corresponding to P2 and P3, respectively. Direct indicator of glyphosate degradation was determined using GC analysis. Within 7 days after Trichoderma viride FRP3 was introduced, glyphosate content of treated soil decreased. This fungal strain provided 48% (P2) and 70% (P3) of glyphosate degradation higher than indigenous soil microbial community (P1) within 28 days of application.
Keywords
Full Text:
PDFReferences
Adnan, Hasanuddin & Manfarizah. (2012). Aplikasi beberapa dosis herbisida glifosat dan paraquat pada sistem Tanpa Olah Tanah (TOT) serta pengaruhnya terhadap sifat kimia tanah, karakteristik gulma dan hasil kedelai [The application of several dosage herbicide glyphosate and paraquat in no-tillage system and its influence on soil chemical properties, weed characteristics, and soybean yield]. Jurnal Agrista, 16(3), 135-145. Retrieved from http://www.jurnal.unsyiah.ac.id/agrista/article/download/658/566
Arfarita, N., Imai, T., Kanno, A., Higuchi, T., Yamamoto, K., & Sekine, M. (2011). Screening of soil-born fungi from forest soil using glyphosate herbicide as the sole source of phosphorus. Journal of Water and Environment Technology, 9(4), 391–400. crossref
Arfarita, N., Imai, T., Kanno, A., Yarimizu, T., Xiaofeng, S., Jie, W., … Akada, R. (2013). The potential use of trichoderma viride strain FRP3 in biodegradation of the herbicide glyphosate. Biotechnology and Biotechnological Equipment, 27(1), 3518–3521. crossref
Askar, A. I., Ibrahim, G. H., & Osman, K. A. (2007). Biodegradation kinetics of bromoxynil as a pollution control technology. Egyptian Journal of Aquatic Research, 33(3), 111–121. Retrieved from http://www.oceandocs.org/bitstream/handle/1834/2200/Text.pdf?sequence=1
Cox, C. (1998). Glyphosate (Roundup). Journal of Pesticide Reform, 18(3), 3–17. Retrieved from http://www.wolf.sk/dok/pesticidy/glyphopsate.pdf
Eberbach, P. (1998). Applying non-steady-state compartmental analysis to investigate the simultaneous degradation of soluble and sorbed glyphosate (N-(phosphonomethyl) glycine) in four soils. Pesticide Science, 52(3), 229–240. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-9063(199803)52:3%3C229::AID-PS684%3E3.0.CO;2-O/abstract
Ermakova, I. T., Kiseleva, N. I., Shushkova, T., Zharikov, M., Zharikov, G. A., & Leontievsky, A. A. (2010). Bioremediation of glyphosate-contaminated soils. Applied Microbiology and Biotechnology, 88(2), 585–594. crossref
Hallas, L. E., Hahn, E. M. & Korndorfer, C. (1988). Characterization of microbial traits associated with glyphosate biodegradation in industrial activated sludge. Journal of Industrial Microbiology, 3(6), 377-385. crossref
Hesse, P. R. (1971). A textbook of soil chemical analysis. London: John Murray.
Krzysko-Lupicka, T., & Orlik, A. (1997). Use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere, 34(12), 2601–2605. crossref
Quiroz-Sarmiento, V. F., Ferrera-Cerrato, R., Alarcon, A., & Hernández, M. E. L. (2008). Antagonismo in vitro de cepas de Aspergillus y Trichoderma hacia hongos filamentosos que afectan el cultivo de ajo [In vitro antagonism of Aspergillus and Trichoderma strains against garlic-pathogenic filamentous fungi]. Revista Mexicana de Micologia, 26, 27–34. Retrieved from http://www.scielo.org.mx/pdf/rmm/v26/v26a5.pdf
Rajendiran, R., Jegadeeshkumar, D., Suresh-kumar, B. T., & Nisha, T. (2010). In vitro assessment of antagonistic activity of Trichoderma viride against post harvest pathogens. Journal of Agricultural Technology, 6(1), 31–35.
Rincon, A. M., Benitez, T., Codon, A. C., & Moreno-Mateos, M. A. (2009). Biotechnological aspects of Trichoderma spp. In M. Rai & P. D. Bridge (Eds.), Applied Mycology (pp. 216–238). London: CAB International. crossref
Rueppel, M. L., Brightwell, B. B., Schaefer, J., & Marvel, J. T. (1977). Metabolism and degradation of glyphosate in soil and water. Journal of Agricultural and Food Chemistry, 25(3), 517–528. crossref
Shovan, L. R., Bhuiyan, M. K. A., Begum, J. A., & Pervez, Z. (2008). In vitro control of Colletotrichum dematium causing anthracnose of soybean by fungicides, plant extracts and Trichoderma harzianum. International Journal of Sustainable Crop Production, 3(3), 10–17. Retrieved from http://ggfjournals.com/assets/uploads/10-171.pdf
Zayed, S. M. A. D., Mostafa, I. Y., Farghaly, M. M., Attaby, H. S., Adam, Y. M., & Mahdy, F. M. (1983). Microbial degradation of trifluralin by Aspergillus carneus, Fusarium oxysporum and Trichoderma viride. Journal of Environmental Science and Health - Part B, 18(2), 253–267. crossref
DOI: http://doi.org/10.17503/agrivita.v38i3.550
Copyright (c) 2016 AGRIVITA, Journal of Agricultural Science
License URL: https://creativecommons.org/licenses/by-nc/4.0/