New Report: Helopeltis cinchonae Mann (Hemiptera: Miridae) Attacking Commercial Hydrangea Flowering Plants in East Java, Indonesia
Abstract
Formerly, the mirid bug has not been recorded for Hydrangea macrophylla (Thunb.), in Indonesia. Infestation of mirid bug was found on the leaves of Hydrangea in the vegetative growth phase from July 2023 to July 2024 in five hamlet fields at the ornamental farming center in Batu City, East Java. Plant samples were observed diagonally and five plants in each point were selected for samples. On each of the top ten leaves of the sample plants, the percentage of attack symptoms was carefully observed. Nymphs found during the observation were reared to imago, and adults were identified as Helopeltis cinchonae Mann (Hemiptera: Miridae). Insect pests, infestation symptoms, and egg locations were documented during the study. This is the first report of a pest causing significant damage to commercial Hydrangea plants in Batu, East Java, indicating the need to develop an integrated pest management strategy to support increased Hydrangea cut flower production in Batu.
Keywords
Full Text:
PDFReferences
Aldini, G. M., Rahma, A. A., & Budiman, A. (2023). Morphological and molecular identification of Helopeltis species on cocoa from Kaliwining experimental station, Jember, Indonesia. Pelita Perkebunan (A Coffee and Cocoa Research Journal), 39(2), 141–148. DOI
Barrufaldi, A. P. F., Hayashida, R., Hoback, W. W., Higley, L. G., de Carvalho, J. R., & de Oliveira, R. C. (2023). Trade-offs between temperature and fitness in Euschistus heros (Fabricius) (Hemiptera: Pentatomidae): Implications for mass rearing and field management. Insects, 14(5), 448. DOI
Chakraborty, U. & Chakraborty, N. (2005). Impact of environmental factors on infestation of tea leaves by Helopeltis theivora, and associated changes in flavonoid flavor components and enzyme activities. Phytoparasitica, 33, 88–96. DOI
Chandar, A. (2023). Field efficacy of insecticides and botanicals for management of spotted stem borer (Chilo partellus) on maize (Zea mays L.). International Journal of Plant & Soil Science, 35(23), 199-208. DOI
Chen, H., Lu, C., Jiang, H. & Peng, J. (2015). Global transcriptome analysis reveals distinct aluminum-tolerance pathways in the al-accumulating species Hydrangea macrophylla and marker identification. Plos One, 10(12), e0144927. DOI
Das, R., Roy, S., Handique, G., Chakraborti, D., Naskar, S., Chakraborty, K. & Babu, A. (2024). Decoding defenses: biochemical insights into insecticide resistance in tea mosquito bug, Helopeltis theivora Waterhouse (Hemiptera: Miridae) from tea plantations of Eastern India. Crop Protection, 184, 106802. DOI
Firake, D.M., Sankarganesh, E., Yeshwanth, H.M. & Behere, G.T. (2021). Mirid bug, Helopeltis cinchonae Mann: a new pest of economically important horticultural crops in Northeast India. Phytoparasitica, 49(3), 317–326. DOI
González, M. A., Arenas, C. N., Ríos, J. A., Miranda, J., Bello, A. P., Botero, J. & Betancur, M. (2024). Life-Cycle Assessment in Hydrangea Cultivation in Colombia and Their Cleaner Production Strategies. Sustainability, 16(2), 887. DOI
Gopi, R., Kalita, H., Avasthe, R., Yadav, A., Singh, M. & Thapa, D. (2018). Does Pestalotiopsis royenae cause leaf streak of large cardamom?. Current Science, 114(10), 2155. DOI
Govindan, B. N. & Hutchison, W. (2020). Influence of temperature on age-stage, two-sex life tables for a Minnesota-acclimated population of the brown marmorated stink bug (Halyomorpha halys). Insects, 11(2), 108. DOI
IBE (1917). The Review of Applied Entomology. Series A: Agriculture. Queens Gate. London. (pp. 446).
Kalshoven, L. G. E. (1981). The Pest of Crop in Indonesia. Revised by Van der Laan. PT. Ictiar Baru Van Hoeve: Jakarta.
Leefmans, S. (1916). Contribution to the question of Helopeltis and tea. In CAB International (1917), The Review of applied entomology. Series A Agricultural. London, UK: The Imperial Bureau of Entomology. (pp. 413-416). website
Lever, R. J. A. W. (1949). The tea mosquito bugs (Helopeltis spp.) in the Cameron Highlands. Malayan Agricultural Journal, 32, 91-109. website
Lu, Y., Wyckhuys, K. A., & Wu, K. (2024). Pest status, bio-ecology, and area-wide management of Mirids in East Asia. Annual review of entomology, 69(1), 393-413. DOI
Madhu, T. N., Saneera, E. K., Pandian, R. T. P., Bhavishya, Chaithra, M., Sujithra, Nagaraja, N. R., Kumar, B. J. N. & Apshara, S. E. (2024). Laboratory rearing of tea mosquito bug, Helopeltis theivora Waterhouse (Hemiptera: Miridae) on cocoa (Theobroma cacao L.). Phytoparasitica, 52(4), 64. DOI
Magsi, F.H., Cai, X., Luo, Z., Li, Z., Bian, L., Xiu, C., Fu, N., Li, J., Hall, D.R. & Chen, Z. (2024), Identification, synthesis, and field evaluation of components of the female-produced sex pheromone of Helopeltis cinchonae (Hemiptera: Miridae), an emerging pest of tea. Pest Management Science, 80(9), 4243–4252. DOI
Melina, S., Martono, E. & Trisyono, Y. A. (2016). Confirmation that Helopeltis species attacking cacao in Yogyakarta is Helopeltis bradyi Waterhouse, not Helopeltis antonii Signoret (Heteroptera: Miridae). Jurnal Entomologi Indonesia, 13(1), 9-20. DOI
Olaranont, Y., Stewart, A., Songnuan, W. & Traiperm, P. (2022). How and where Periglandula fungus interacts with different parts of Ipomoea asarifolia. Journal of Fungi, 8(8), 823. DOI
Pancaningtyas, S., Rahayu, D. S., & Sari, A. B. T. (2022). DNA barcoding for identification of Helopeltis sp. from Kaliwining experimental station using mitochondrial COI gene. Pelita Perkebunan (A Coffee and Cocoa Research Journal), 38(3), 179-189. DOI
Qin, Z., Chen, S., Feng, J., Chen, H., Qi, X., Wang, H. & Deng, Y. (2022). Identification of aluminum-activated malate transporters (ALMT) family genes in Hydrangea and functional characterization of HmALMT5/9/11 under aluminum stress. Peerj, 10, e13620. DOI
Rahmati, R., Hamid, R., Ghorbanzadeh, Z., Jacob, F., Azadi, P., Zeinalabedini, M., Karimi Farsad, L., Kazemi, M., Ebrahimi, M. A., Shahinnia, F., Hosseini Salekdeh, G., Ghaffari, M. R., & Hajirezaei, M. R. (2022). Comparative transcriptome analysis unveils the molecular mechanism underlying sepal colour changes under acidic pH substratum in Hydrangea macrophylla. International Journal of Molecular Sciences, 23(23), 15428. DOI
Roy, S., Mukhopadhyay, A., & Gurusubramanian, G. (2010). Relative susceptibility of tea mosquito bug, Helopeltis theivora Waterhouse and red spider mite, Oligonychus coffeae Nietner eggs to commonly used pesticides. Journal of Plant Protection Research, 50(3), 244-249. DOI
Sankarganesh, E., Lavanya Sravani, B., Rajeshwaran, B. & Mounika, M. N. (2023). Tea Mosquito Bug (Helopeltis spp.): A Pest of Economically Important Fruit and Plantation Crops: Its Status and Management Prospects. Plant Health Archives, 1(2), 18-28. DOI
Saroj, P. L., Bhat, P. S. & Srikumar, K. K. (2016). Tea mosquito bug (Helopeltis spp.) A devastating pest of cashew plantations in India: A review. The Indian Journal of Agricultural Sciences, 86(2), 151-162. DOI
Srikumar, K. K. & Bhat, P. S. (2013). Biology of the tea mosquito bug (Helopeltis theivora Waterhouse) on Chromolaena odorata (L.) R.M. King & H. Rob. Scientific Note. Chilean Journal of Agricultural Research, 73(3): 309-314. DOI
Stonedahl, G. M. (1991). The Oriental species of Helopeltis (Heteroptera: Miridae): a review of economic literature and guide to identification. Bulletin of Entomological Research, 81(4), 465–490. DOI
Wagiman, F. X., Sari, N. M., & Wijonarko, A. (2021). The population structure and presence of helopeltis bradyi on the tea plant parts at various times during the day. IOP Conference Series: Earth and Environmental Science, 686(1), 012062. DOI
Wu, X. & Alexander, L. (2019). Genetic diversity and population structure analysis of bigleaf Hydrangea using genotyping-by-sequencing. Journal of the American Society for Horticultural Science, 144(4), 257-263. DOI
DOI: http://doi.org/10.17503/agrivita.v47i1.4669
Copyright (c) 2025 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.