Influence of Biohumus Application for Enhancing Crop Yield and Soil Fertility in Agricultural Diversity: A Review
Abstract
Keywords
Full Text:
Early ViewReferences
Abuarab, M. E., El-Mogy, M. M., Hassan, A. M., Abdeldaym, E. A., Abdelkader, N. H., & El-Sawy, M. B. I. (2019). The effects of root aeration and different soil conditioners on the nutritional values, yield, and water productivity of potato in clay loam soil. Agronomy, 9(8), 1–17. https://doi.org/10.3390/agronomy9080418
Akinnawo, S. O. (2023). Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges, 12(March). https://doi.org/10.1016/j.envc.2023.100733
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M.-Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(42), 1–33. https://doi.org/2021, 9, 42. https://doi.org/10.3390/ toxics9030042
Aslam, T., Maqsood, M., Jamshaid, I., Ashraf, K., Zaidi, F., Khalid, S., Shah, F. U. H., Noureen, S., & Maria. (2020). Health benefits and therapeutic importance of green leafy vegetables (GLVs). European Academic Research, 8(7), 4213–4229. https://euacademic.org/UploadArticle/4605.pdf
Bakti, D., Rosmayati, & Rahmawati, N. (2020). Evaluation of vegetative growth and total chlorophyll of four sweet potato genotypes in the highland and lowland: Proceedings of the International Conference of Science, Technology, Engineering, Environmental and Ramification Researches, 93–97. https://doi.org/10.5220/0010097200930097
Bassi, D., Menossi, M., & Mattiello, L. (2018). Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-20653-1
Besaliev, I. N., Panfilov, A. L., Reger, N. S., Karavaytsev, J. A., & Abdrashitov, R. R. (2021). Effect of biohumus and growth regulators on the content of pigments and catalase, spike productivity and grain quality of spring wheat. IOP Conference Series: Earth and Environmental Science, 624(1), 012151. https://doi.org/10.1088/1755-1315/624/1/012151
Bhat, S. A., Singh, S., Singh, J., Kumar, S., Bhawana, & Vig, A. P. (2018). Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. Bioresource Technology, 252(2017), 172–179. https://doi.org/10.1016/j.biortech.2018.01.003
Blagorodova, E. N., Varfolomeyeva, N. I., Zvyagina, A. S., & Nepshekueva, T. S. (2022). The effect of the humic preparation BioHumus Grand Flora Victoria on the lettuce productivity. IOP Conference Series: Earth and Environmental Science, 1010(1), 1–5. https://doi.org/10.1088/1755-1315/1010/1/012023
Boteva, H., Turegeldiyev, B., Aitbayev, T., Rakhymzhanov, B., & Aitbayeva, A. (2019). The influence of biofertilizers and organic fertilizers on productivity, quality and storing of cabbage (Brassica oleracea var. capitata L.) in the South-East of Kazakhstan. Bulgarian Journal of Agricultural Science, 25(5), 973-979.
Çerçioğlu, M. (2019). The impact of soil conditioners on some chemical properties of soil and grain yield of corn (Zea mays L.). Tarim Bilimleri Dergisi, 25(2), 224–231. https://doi.org/10.15832/ankutbd.399164
Charshanbiyev, U., Xudoyberganov, N., Odinayev, U., Yuldoshev, O., Allanov, A., & Rakhmatullaev, Y. (2024). The role of biogumus in potato growing in the conditions of Uzbekistan. E3S Web of Conferences, 563, 03025. https://doi.org/10.1051/e3sconf/202456303025
Ćirić, V., Prekop, N., Šeremešić, S., Vojnov, B., Pejić, B., Radovanović, D., & Marinković, D. (2023). The implication of cation exchange capacity (CEC) assessment for soil quality management and improvement. Agriculture and Forestry, 69(4), 113-133. https://doi.org/10.17707/AgricultForest.69.4.08
Conselvan, G. B., Pizzeghello, D., Francioso, O., Di Foggia, M., Nardi, S., & Carletti, P. (2017). Biostimulant activity of humic substances extracted from leonardites. Plant and Soil, 420(1–2), 119–134. https://doi.org/10.1007/s11104-017-3373-z
Dar, G. H., Bhat, R. A., Mehmood, M. A., & Hakeem, K. R. (2021). Microbiota and biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs. In Springer Nature (Vol. 2). https://doi.org/10.1007/978-3-030-61010-4
Dotaniya, M. L., Aparna, K., Dotaniya, C. K., Singh, M., & Regar, K. L. (2019). Role of soil enzymes in sustainable crop production. In Enzymes in Food Biotechnology (pp. 569–589). Elsevier. https://doi.org/10.1016/B978-0-12-813280-7.00033-5
Gedeon, S., Ioannou, A., Balestrini, R., Fotopoulos, V., & Antoniou, C. (2022). Application of biostimulants in tomato plants (Solanum lycopersicum) to enhance plant growth and salt stress tolerance. Plants, 11(22), 1–20. https://doi.org/10.3390/plants11223082
Gneush, A., Zholobova, I., Petenko, A., Gorkovenko, N., & Yurina, N. (2021). The technology of producing biohumus and the study of its qualitative indicators. KnE Life Sciences, 2021, 730–737. https://doi.org/10.18502/kls.v0i0.9010
Gondal, A. H., Hussain, I., Ijaz, A. B., Zafar, A., Ch, B. I., Zafar, H., Sohail, M. D., Niazi, H., Touseef, M., Khan, A. A., Tariq, M., Yousuf, H., & Usama M. (2021). Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. International Journal of Agriculture and Biological Sciences, 71–81.
He, M., He, C. Q., & Ding, N. Z. (2018). Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science, 871(2018), 1–18. https://doi.org/10.3389/fpls.2018.01771
Huang, J., & Hartemink, A. E. (2020). Soil and environmental issues in sandy soils. Earth-Science Reviews, 208(2019), 1-12. https://doi.org/10.1016/j.earscirev.2020.103295
Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science, 8(2017), 1–19. https://doi.org/10.3389/fpls.2017.01617
Ketehouli, T., Carther, K. F. I., Noman, M., Wang, F. W., Li, X. W., & Li, H. Y. (2019). Adaptation of plants to salt stress: Characterization of Na+ and K+ transporters and role of Cbl gene family in regulating salt stress response. Agronomy, 9(11), 1-10. https://doi.org/10.3390/agronomy9110687
Khaledian, Y., Brevik, E. C., Pereira, P., Cerdà, A., Fattah, M. A., & Tazikeh, H. (2017). Modeling soil cation exchange capacity in multiple countries. Catena, 158(2017), 194–200. https://doi.org/10.1016/j.catena.2017.07.002
Kiruba, J. M., & Saeid, A. (2022). An insight into microbial inoculants for bioconversion of waste biomass into sustainable “Bio-Organic” fertilizers: A bibliometric analysis and systematic literature review. International Journal of Molecular Sciences, 23(21), 1–33. https://doi.org/10.3390/ijms232113049
Koçak, B. (2020). Importance of Urease Activity in Soil. International Scientific and Vocational Studies Congress – Science and Health, 12(December), 12–15.
Koza, N., Adedayo, A., Babalola, O., & Kappo, A. (2022). Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms, 10(8), 1528. https://doi.org/10.3390/microorganisms10081528
Laza, E. A., Cristea, O., & Ungureanu, N. (2021). Technology for biohumus production, an alternative to conventional fertilizers for bio agriculture. E3S Web of Conferences, 286(2021), 1–5. https://doi.org/10.1051/e3sconf/202128603014
Li, Y., Fang, F., Wei, J., Wu, X., Cui, R., Li, G., Zheng, F., & Tan, D. (2019). Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-48620-4
Liu, X., Shi, Y., Kong, L., Tong, L., Cao, H., Zhou, H., & Lv, Y. (2022). Long-term application of bio-compost increased soil microbial community diversity and altered its composition and network. Microorganisms, 10(462), 1–19. https://doi.org/10.3390/microorganisms10020462
Long, T. T., & Koontanakulvong, S. (2019). Deep percolation charactertistics via soil moisture sensor approach in Saigon River Basin, Vietnam. International Journal of Civil Engineering and Technology (IJCIET), 10(3), 403–412. https://iaeme.com/Home/article_id/IJCIET_10_03_041
Luo, Y., van Veelen, H. P. J., Chen, S., Sechi, V., ter Heijne, A., Veeken, A., Buisman, C. J. N., & Bezemer, T. M. (2022). Effects of sterilization and maturity of compost on soil bacterial and fungal communities and wheat growth. Geoderma, 409, 1–10. https://doi.org/10.1016/j.geoderma.2021.115598
Madiyeva, A., Galaktionova, E. V, & Kupčinskienė, E. (2018). Efficiency of application of fertilizers biohumus and gumint at cultivation of Sudan grass (Sorghum sudanense L.) on seeds in the conditions of Northern Kazakhstan. Kauno Raj., Akademija: LŽUŪ, 2018, 109–112. https://www.vdu.lt/cris/entities/publication/7a4d4540-167f-4c36-b203-8573ff8cf7e4
Mamadalievich, G. A., & Kizi, M. F. D. (2022). Chemical composition of biohumus and the significance of its growth in the conditions of Fergana Region. International Scientific Journal, 1(7), 696–702. https://doi.org/10.5281/zenodo.7317617
Mammadova, U. (2022). The effect of bio-humus on Cardinal grape yield (Vitis vinifera L.) and nutrient contents of dark brown soil using drip irrigation systems under the open field conditions. Eurasian Journal of Soil Science, 11(4), 345-352. https://doi.org/10.18393/ejss.1172178
Mattila, T. J., & Rajala, J. (2022). Estimating cation exchange capacity from agronomic soil tests: Comparing Mehlich-3 and ammonium acetate sum of cations. Soil Science Society of America Journal, 86(1), 47–50. https://doi.org/10.1002/saj2.20340
Moslehi, A., Feizian, M., Higueras, P., & Eisvand, H. R. (2019). Assessment of EDDS and vermicompost for the phytoextraction of Cd and Pb by sunflower (Helianthus annuus L.). International Journal of Phytoremediation, 21(3), 191–199. https://doi.org/10.1080/15226514.2018.1501336
Muhamediyeva, D. K., & Nurumova, A. Y. (2023). Enhancing soil fertility through the application of biohumus. E3S Web of Conferences, 411, 02044. https://doi.org/10.1051/e3sconf/202341102044
Muhamedyarova, L. G., Derkho, M. A., Meshcheriakova, G. V., Gumenyuk, O. A., & Shakirova, S. S. (2020). Influence of bio-humus on soil fertility, productivity and environmental safety of spring wheat grain. Agronomy Research, 18(2), 483–493. https://doi.org/10.15159/AR.20.152
Nhu, N. T. H., Chuen, N. L., & Riddech, N. (2018). The effects bio-fertilizer and liquid organic fertilizer on the growth of vegetables in the pot experiment. Chiang Mai Journal of Science, 45(3), 1257–1273. https://epg.science.cmu.ac.th/ejournal/journal-detail.php?id=9135
Norton, L. D., & Zhang, X. J. (2020). Liming to improve chemical and physical properties of soil. In Handbook of Soil Conditioners (pp. 309-331). CRC Press.Oshunsanya, S. O. (2019). Introductory chapter: Relevance of soil pH to agriculture. Intech Open Science, 2019, 1–6. https://doi.org/10.5772/intechopen.82551
Oshunsanya, S. O., Nwosu, N. J., & Li, Y. (2019). Abiotic stress in agricultural crops under climatic conditions. Sustainable Agriculture, Forest and Environmental Management, 71-100. https://doi.org/10.1007/978-981-13-6830-1_3
Piskaeva, A. I., Babich, O. O., Dolganyuk, V. F., & Garmashov, S. Y. (2017). Analysis of influence of biohumus on the basis of consortium of effective microorganisms on the productivity of winter wheat. Foods and Raw Materials, 5(1), 90–99. https://doi.org/10.21179/2308-4057-2017-1-90-99
Prisa, D. (2023). Application of Biohumus at different substrate replacement rates in the germination and cultivation of Zea mays. GSC Advanced Research and Reviews, 15(3), 193-200. https://doi.org/10.30574/gscarr.2023.15.3.0237
Raven, J. A., Lambers, H., Smith, S. E., & Westoby, M. (2018). Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytologist, 217(4), 1420–1427. https://doi.org/10.1111/nph.14967
Sedlacek, C. J., Giguere, A. T., & Pjevac, P. (2020). Is too much fertilizer a problem? Frontiers, 8(1), 1–7. https://doi.org/10.3389/frym.2020.00063
Shang, Q., Wang, Y., Tang, H., Sui, N., Zhang, X., & Wang, F. (2021). Genetic, hormonal, and environmental control of tillering in wheat. Crop Journal, 9(5), 986–991. https://doi.org/10.1016/j.cj.2021.03.002
Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6, 1–36. https://doi.org/10.3389/fpls.2015.01143
Strachel, R., Wyszkowska, J., & Baćmaga, M. (2017). The role of compost in stabilizing the microbiological and biochemical properties of zinc-stressed soil. Water, Air, and Soil Pollution, 228(349), 1–15. https://doi.org/10.1007/s11270-017-3539-6
Vinyukov, A., Bondareva, O., Konovalenko, L., Chuhrii, H., & Korobova, O. (2023). Application of biohumus for reducing the accumulation of heavy metals in the soil and spring barley plants in the Donetsk industrial region. AgroLife Scientific Journal, 12(1), 259-264. https://doi.org/10.17930/AGL2023130
Wahid, F., Fahad, S., Danish, S., Adnan, M., Yue, Z., Saud, S., Siddiqui, M. H., Brtnicky, M., Hammerschmiedt, T., & Datta, R. (2020). Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture (Switzerland), 10(8), 1–14. https://doi.org/10.3390/agriculture10080334
Yan, B., & Hou, Y. (2018). Effect of soil magnesium on plants: A Review. IOP Conference Series: Earth and Environmental Science, 170(2), 1–9. https://doi.org/10.1088/1755-1315/170/2/022168
DOI: http://doi.org/10.17503/agrivita.v47i2.4490
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.