Influence of Biohumus Application for Enhancing Crop Yield and Soil Fertility in Agricultural Diversity: A Review

Siti Nurul Aini Abdul Rahman, Tuan Syaripah Najihah

Abstract


This review provides a concise overview of the findings from a recent study examining the impact of biohumus on agricultural diversity. The global challenges of low crop yields and soil infertility have prompted a longstanding debate. Chemical fertilizers have historically been favored for soil enhancement despite their unknown ecological consequences. Growing awareness of environmental contamination resulting from chemical residues has spurred a shift towards economically and environmentally friendly organic fertilizers. Biohumus, an organic fertilizer derived from the decomposition of organic waste, offers a natural source of trace elements that promote plant growth and soil fertility. Numerous studies have demonstrated that biohumus promotes enhanced vegetative growth and increased yields due to its nutrient-rich composition, specifically tailored to support plant development. Additionally, trace elements and microbes within biohumus contribute to improved soil performance, particularly in infertile agricultural regions. Remarkably, biohumus has been demonstrated to mitigate the adverse effects of abiotic stress on plants by facilitating the release of biostimulants. This comprehensive review aims to disseminate research outcomes on the viability of biohumus as a sustainable alternative to chemical fertilizers in agriculture.

Keywords


Biocompost; Biohumus; Organic fertilizer; Plant growth; Soil fertility

Full Text:

Early View

References


Abuarab, M. E., El-Mogy, M. M., Hassan, A. M., Abdeldaym, E. A., Abdelkader, N. H., & El-Sawy, M. B. I. (2019). The effects of root aeration and different soil conditioners on the nutritional values, yield, and water productivity of potato in clay loam soil. Agronomy, 9(8), 1–17. https://doi.org/10.3390/agronomy9080418

Akinnawo, S. O. (2023). Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges, 12(March). https://doi.org/10.1016/j.envc.2023.100733

Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M.-Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(42), 1–33. https://doi.org/2021, 9, 42. https://doi.org/10.3390/ toxics9030042

Aslam, T., Maqsood, M., Jamshaid, I., Ashraf, K., Zaidi, F., Khalid, S., Shah, F. U. H., Noureen, S., & Maria. (2020). Health benefits and therapeutic importance of green leafy vegetables (GLVs). European Academic Research, 8(7), 4213–4229. https://euacademic.org/UploadArticle/4605.pdf

Bakti, D., Rosmayati, & Rahmawati, N. (2020). Evaluation of vegetative growth and total chlorophyll of four sweet potato genotypes in the highland and lowland: Proceedings of the International Conference of Science, Technology, Engineering, Environmental and Ramification Researches, 93–97. https://doi.org/10.5220/0010097200930097

Bassi, D., Menossi, M., & Mattiello, L. (2018). Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-20653-1

Besaliev, I. N., Panfilov, A. L., Reger, N. S., Karavaytsev, J. A., & Abdrashitov, R. R. (2021). Effect of biohumus and growth regulators on the content of pigments and catalase, spike productivity and grain quality of spring wheat. IOP Conference Series: Earth and Environmental Science, 624(1), 012151. https://doi.org/10.1088/1755-1315/624/1/012151

Bhat, S. A., Singh, S., Singh, J., Kumar, S., Bhawana, & Vig, A. P. (2018). Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. Bioresource Technology, 252(2017), 172–179. https://doi.org/10.1016/j.biortech.2018.01.003

Blagorodova, E. N., Varfolomeyeva, N. I., Zvyagina, A. S., & Nepshekueva, T. S. (2022). The effect of the humic preparation BioHumus Grand Flora Victoria on the lettuce productivity. IOP Conference Series: Earth and Environmental Science, 1010(1), 1–5. https://doi.org/10.1088/1755-1315/1010/1/012023

Boteva, H., Turegeldiyev, B., Aitbayev, T., Rakhymzhanov, B., & Aitbayeva, A. (2019). The influence of biofertilizers and organic fertilizers on productivity, quality and storing of cabbage (Brassica oleracea var. capitata L.) in the South-East of Kazakhstan. Bulgarian Journal of Agricultural Science, 25(5), 973-979.

Çerçioğlu, M. (2019). The impact of soil conditioners on some chemical properties of soil and grain yield of corn (Zea mays L.). Tarim Bilimleri Dergisi, 25(2), 224–231. https://doi.org/10.15832/ankutbd.399164

Charshanbiyev, U., Xudoyberganov, N., Odinayev, U., Yuldoshev, O., Allanov, A., & Rakhmatullaev, Y. (2024). The role of biogumus in potato growing in the conditions of Uzbekistan. E3S Web of Conferences, 563, 03025. https://doi.org/10.1051/e3sconf/202456303025

Ćirić, V., Prekop, N., Šeremešić, S., Vojnov, B., Pejić, B., Radovanović, D., & Marinković, D. (2023). The implication of cation exchange capacity (CEC) assessment for soil quality management and improvement. Agriculture and Forestry, 69(4), 113-133. https://doi.org/10.17707/AgricultForest.69.4.08

Conselvan, G. B., Pizzeghello, D., Francioso, O., Di Foggia, M., Nardi, S., & Carletti, P. (2017). Biostimulant activity of humic substances extracted from leonardites. Plant and Soil, 420(1–2), 119–134. https://doi.org/10.1007/s11104-017-3373-z

Dar, G. H., Bhat, R. A., Mehmood, M. A., & Hakeem, K. R. (2021). Microbiota and biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs. In Springer Nature (Vol. 2). https://doi.org/10.1007/978-3-030-61010-4

Dotaniya, M. L., Aparna, K., Dotaniya, C. K., Singh, M., & Regar, K. L. (2019). Role of soil enzymes in sustainable crop production. In Enzymes in Food Biotechnology (pp. 569–589). Elsevier. https://doi.org/10.1016/B978-0-12-813280-7.00033-5

Gedeon, S., Ioannou, A., Balestrini, R., Fotopoulos, V., & Antoniou, C. (2022). Application of biostimulants in tomato plants (Solanum lycopersicum) to enhance plant growth and salt stress tolerance. Plants, 11(22), 1–20. https://doi.org/10.3390/plants11223082

Gneush, A., Zholobova, I., Petenko, A., Gorkovenko, N., & Yurina, N. (2021). The technology of producing biohumus and the study of its qualitative indicators. KnE Life Sciences, 2021, 730–737. https://doi.org/10.18502/kls.v0i0.9010

Gondal, A. H., Hussain, I., Ijaz, A. B., Zafar, A., Ch, B. I., Zafar, H., Sohail, M. D., Niazi, H., Touseef, M., Khan, A. A., Tariq, M., Yousuf, H., & Usama M. (2021). Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. International Journal of Agriculture and Biological Sciences, 71–81.

He, M., He, C. Q., & Ding, N. Z. (2018). Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science, 871(2018), 1–18. https://doi.org/10.3389/fpls.2018.01771

Huang, J., & Hartemink, A. E. (2020). Soil and environmental issues in sandy soils. Earth-Science Reviews, 208(2019), 1-12. https://doi.org/10.1016/j.earscirev.2020.103295

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science, 8(2017), 1–19. https://doi.org/10.3389/fpls.2017.01617

Ketehouli, T., Carther, K. F. I., Noman, M., Wang, F. W., Li, X. W., & Li, H. Y. (2019). Adaptation of plants to salt stress: Characterization of Na+ and K+ transporters and role of Cbl gene family in regulating salt stress response. Agronomy, 9(11), 1-10. https://doi.org/10.3390/agronomy9110687

Khaledian, Y., Brevik, E. C., Pereira, P., Cerdà, A., Fattah, M. A., & Tazikeh, H. (2017). Modeling soil cation exchange capacity in multiple countries. Catena, 158(2017), 194–200. https://doi.org/10.1016/j.catena.2017.07.002

Kiruba, J. M., & Saeid, A. (2022). An insight into microbial inoculants for bioconversion of waste biomass into sustainable “Bio-Organic” fertilizers: A bibliometric analysis and systematic literature review. International Journal of Molecular Sciences, 23(21), 1–33. https://doi.org/10.3390/ijms232113049

Koçak, B. (2020). Importance of Urease Activity in Soil. International Scientific and Vocational Studies Congress – Science and Health, 12(December), 12–15.

Koza, N., Adedayo, A., Babalola, O., & Kappo, A. (2022). Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms, 10(8), 1528. https://doi.org/10.3390/microorganisms10081528

Laza, E. A., Cristea, O., & Ungureanu, N. (2021). Technology for biohumus production, an alternative to conventional fertilizers for bio agriculture. E3S Web of Conferences, 286(2021), 1–5. https://doi.org/10.1051/e3sconf/202128603014

Li, Y., Fang, F., Wei, J., Wu, X., Cui, R., Li, G., Zheng, F., & Tan, D. (2019). Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-48620-4

Liu, X., Shi, Y., Kong, L., Tong, L., Cao, H., Zhou, H., & Lv, Y. (2022). Long-term application of bio-compost increased soil microbial community diversity and altered its composition and network. Microorganisms, 10(462), 1–19. https://doi.org/10.3390/microorganisms10020462

Long, T. T., & Koontanakulvong, S. (2019). Deep percolation charactertistics via soil moisture sensor approach in Saigon River Basin, Vietnam. International Journal of Civil Engineering and Technology (IJCIET), 10(3), 403–412. https://iaeme.com/Home/article_id/IJCIET_10_03_041

Luo, Y., van Veelen, H. P. J., Chen, S., Sechi, V., ter Heijne, A., Veeken, A., Buisman, C. J. N., & Bezemer, T. M. (2022). Effects of sterilization and maturity of compost on soil bacterial and fungal communities and wheat growth. Geoderma, 409, 1–10. https://doi.org/10.1016/j.geoderma.2021.115598

Madiyeva, A., Galaktionova, E. V, & Kupčinskienė, E. (2018). Efficiency of application of fertilizers biohumus and gumint at cultivation of Sudan grass (Sorghum sudanense L.) on seeds in the conditions of Northern Kazakhstan. Kauno Raj., Akademija: LŽUŪ, 2018, 109–112. https://www.vdu.lt/cris/entities/publication/7a4d4540-167f-4c36-b203-8573ff8cf7e4

Mamadalievich, G. A., & Kizi, M. F. D. (2022). Chemical composition of biohumus and the significance of its growth in the conditions of Fergana Region. International Scientific Journal, 1(7), 696–702. https://doi.org/10.5281/zenodo.7317617

Mammadova, U. (2022). The effect of bio-humus on Cardinal grape yield (Vitis vinifera L.) and nutrient contents of dark brown soil using drip irrigation systems under the open field conditions. Eurasian Journal of Soil Science, 11(4), 345-352. https://doi.org/10.18393/ejss.1172178

Mattila, T. J., & Rajala, J. (2022). Estimating cation exchange capacity from agronomic soil tests: Comparing Mehlich-3 and ammonium acetate sum of cations. Soil Science Society of America Journal, 86(1), 47–50. https://doi.org/10.1002/saj2.20340

Moslehi, A., Feizian, M., Higueras, P., & Eisvand, H. R. (2019). Assessment of EDDS and vermicompost for the phytoextraction of Cd and Pb by sunflower (Helianthus annuus L.). International Journal of Phytoremediation, 21(3), 191–199. https://doi.org/10.1080/15226514.2018.1501336

Muhamediyeva, D. K., & Nurumova, A. Y. (2023). Enhancing soil fertility through the application of biohumus. E3S Web of Conferences, 411, 02044. https://doi.org/10.1051/e3sconf/202341102044

Muhamedyarova, L. G., Derkho, M. A., Meshcheriakova, G. V., Gumenyuk, O. A., & Shakirova, S. S. (2020). Influence of bio-humus on soil fertility, productivity and environmental safety of spring wheat grain. Agronomy Research, 18(2), 483–493. https://doi.org/10.15159/AR.20.152

Nhu, N. T. H., Chuen, N. L., & Riddech, N. (2018). The effects bio-fertilizer and liquid organic fertilizer on the growth of vegetables in the pot experiment. Chiang Mai Journal of Science, 45(3), 1257–1273. https://epg.science.cmu.ac.th/ejournal/journal-detail.php?id=9135

Norton, L. D., & Zhang, X. J. (2020). Liming to improve chemical and physical properties of soil. In Handbook of Soil Conditioners (pp. 309-331). CRC Press.Oshunsanya, S. O. (2019). Introductory chapter: Relevance of soil pH to agriculture. Intech Open Science, 2019, 1–6. https://doi.org/10.5772/intechopen.82551

Oshunsanya, S. O., Nwosu, N. J., & Li, Y. (2019). Abiotic stress in agricultural crops under climatic conditions. Sustainable Agriculture, Forest and Environmental Management, 71-100. https://doi.org/10.1007/978-981-13-6830-1_3

Piskaeva, A. I., Babich, O. O., Dolganyuk, V. F., & Garmashov, S. Y. (2017). Analysis of influence of biohumus on the basis of consortium of effective microorganisms on the productivity of winter wheat. Foods and Raw Materials, 5(1), 90–99. https://doi.org/10.21179/2308-4057-2017-1-90-99

Prisa, D. (2023). Application of Biohumus at different substrate replacement rates in the germination and cultivation of Zea mays. GSC Advanced Research and Reviews, 15(3), 193-200. https://doi.org/10.30574/gscarr.2023.15.3.0237

Raven, J. A., Lambers, H., Smith, S. E., & Westoby, M. (2018). Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytologist, 217(4), 1420–1427. https://doi.org/10.1111/nph.14967

Sedlacek, C. J., Giguere, A. T., & Pjevac, P. (2020). Is too much fertilizer a problem? Frontiers, 8(1), 1–7. https://doi.org/10.3389/frym.2020.00063

Shang, Q., Wang, Y., Tang, H., Sui, N., Zhang, X., & Wang, F. (2021). Genetic, hormonal, and environmental control of tillering in wheat. Crop Journal, 9(5), 986–991. https://doi.org/10.1016/j.cj.2021.03.002

Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6, 1–36. https://doi.org/10.3389/fpls.2015.01143

Strachel, R., Wyszkowska, J., & Baćmaga, M. (2017). The role of compost in stabilizing the microbiological and biochemical properties of zinc-stressed soil. Water, Air, and Soil Pollution, 228(349), 1–15. https://doi.org/10.1007/s11270-017-3539-6

Vinyukov, A., Bondareva, O., Konovalenko, L., Chuhrii, H., & Korobova, O. (2023). Application of biohumus for reducing the accumulation of heavy metals in the soil and spring barley plants in the Donetsk industrial region. AgroLife Scientific Journal, 12(1), 259-264. https://doi.org/10.17930/AGL2023130

Wahid, F., Fahad, S., Danish, S., Adnan, M., Yue, Z., Saud, S., Siddiqui, M. H., Brtnicky, M., Hammerschmiedt, T., & Datta, R. (2020). Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture (Switzerland), 10(8), 1–14. https://doi.org/10.3390/agriculture10080334

Yan, B., & Hou, Y. (2018). Effect of soil magnesium on plants: A Review. IOP Conference Series: Earth and Environmental Science, 170(2), 1–9. https://doi.org/10.1088/1755-1315/170/2/022168




DOI: http://doi.org/10.17503/agrivita.v47i2.4490

Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.