Response of Advanced Rice Lines from Inter and Intraspecific Backgrounds to Saline Stress Conditions

Fernando Cobos, Walter Reyes, Iris Perez-Almeida, Reina Medina, Pedro Garcia, Rosa Alvarez

Abstract


The growth and development of rice crops can be adversely affected by several stresses, including salinity. This study aimed to determine the performance of rice genotypes composed of advanced lines from interspecific and intraspecific crosses between Oryza sativa L. ssp. japonica x O. rufipogon G, grown in saline conditions achieved by NaCl applications in the irrigation water (electrical conductivity (EC) of 7.0 and 0.2 dS/m) in a greenhouse. A randomized complete block design with six replications was used with a split-plot arrangement. Grain yield, root length, number of panicles, root, and shoot dry biomass were evaluated. The genotypes showed wide phenotypic variability in the response to salt stress in all the variables studied, except for shoot dry biomass. The advanced lines from interspecific crosses showed a greater number of genotypes with tolerance to salt stress and exhibited a greater number of transgressive lines in group 1, compared to the lines of group 2, japonica x japonica. The lines that resulted in greater tolerance to salt stress can be used in genetic improvement programs that seek to develop rice cultivars tolerant to saline stress.


Keywords


Abiotic stress; Grain yield; Interspecific crosses; Oryza ssp.; Oryza rufipogon

Full Text:

PDF

References


Abbas, M. K., Ali, A. S., Hasan, H. H., & Radhi, H. G. (2013). Salt tolerance study of six cultivars of rice (Oryza sativa L.) during germination and early seedling growth. Journal of Agricultural Science, 5(1), 250-259. https://doi.org/10.5539/jas.v5n1p250

Ahmadizadeh, M., Vispo, N. A., Calapit-Palao, C. D. O., Pangaan, I. D., Viña, C. Dela, & Singh, R. K. (2016). Reproductive stage salinity tolerance in rice: a complex trait to phenotype. Indian Journal of Plant Physiology, 21(4), 528–536. https://doi.org/10.1007/s40502-016-0268-6

Ali, Y., Aslam, Z., Ashraf, M. Y., & Tahir, G. R. (2004). Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. International Journal of Environmental Science & Technology, 1(3), 221–225. https://doi.org/10.1007/BF03325836

Araújo, B. D. A., Silva, L. M. A., Canuto, K. M., Alves Filho, E. G., Pimentel, K. S., Carvalho, R. D. C. S., & Bezerra, M. A. (2025). NMR-based metabolomics and pathway analysis of leaves and fruits of Cucumis melo L. cultivated under saline stress conditions. Food Research International, 204, 115921. https://doi.org/10.1016/j.foodres.2025.115921

Aref, F., & Ebrahimi Rad, H. (2012). Physiological characterization of rice under salinity stress during vegetative and reproductive stages. Indian Journal of Science and Technology, 5(4), 1–9. https://doi.org/10.17485/ijst/2012/v5i4.11

Blumwald, E., Aharon, G. S., & Apse, M. P. (2000). Sodium transport in plant cells. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1465(1–2), 140–151. https://doi.org/10.1016/S0005-2736(00)00135-8

Chen, H., Yunze, R., & Zhongjun, J. (2025). A meta-analysis of 30 years in China and micro-district experiments shows organic fertilizer quantification combined with chemical fertilizer reduction enhances rice yield on saline-alkali land. Rice Science, S1672630825000046. https://doi.org/10.1016/j.rsci.2025.01.004

De Leon, T. B., Linscombe, S., Gregorio, G., & Subudhi, P. K. (2015). Genetic variation in Southern USA rice genotypes for seedling salinity tolerance. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00374

Dobermann, A., & Fairhust, T. (2012). Arroz: desordenes nutricionales y manejo de nutrientes. IPNI. 155-156 pp. (in Spanish).

Dolo, J. S. (2018). Effects of salinity on growth and yield of rice (Oryza sativa L.) and development of tolerant genotypes in Kilosa District, Tanzania [Doctor of Philosophy Thesis, Sokoine University of Agriculture, Morogoro, Tanzania]. https://www.suaire.sua.ac.tz/server/api/core/bitstreams/d1ae1c65-f30f-4462-8047-f2ef0f5edf9c/content

Fritsche Neto, R., & Borém, A., (2011). Melhoramento de plantas para condições de estresses abióticos. Editora UFV. p 50 - 51.

FAO. (2022). Climate Info tool. https://aquastat.fao.org/climate-information-tool/complete-climate-data?lat=-1.8028334&lon=-79.5287578&year=2022&datasource=agera5

García, M., García, G., Parola, R., Maddela, N. R., Pérez-Almeida, I., & Garcés-Fiallos, F. R. (2024). Root-shoot ratio and SOD activity are associated with the sensitivity of common bean seedlings to NaCl salinization. Rhizosphere, 29, 100848. https://doi.org/10.1016/j.rhisph.2024.100848

Gatti, N., Serio, G., Maghrebi, M., Gentile, C., Bertea, C. M., & Mannino, G. (2025). Biochemical and biomolecular response of Arabidopsis seedlings to osmotic and salt stress: Mitigation by biostimulant formulation enriched in betalain degradation products. Current Plant Biology, 41, 100438. https://doi.org/10.1016/j.cpb.2025.100438

Ghosh, B., Ali Md, N., & Saikat, G. (2016). Response of rice under salinity stress: A review update. Journal of Rice Research, 4, 167. https://doi.org/10.4172/2375-4338.1000167

Haefele, S. M., Wopereis, M. C. S., & Wiechmann, H. (2002). Long-term fertility experiments for irrigated rice in the west African Sahel: Agronomic results. Field Crops Research, 78(2–3), 119–131. https://doi.org/10.1016/S0378-4290(02)00117-X

Hakim, M. A., Juraimi, A. S., Begum, M., Hanafi, M. M., Ismail, M. R., & Selamat, A. (2010). Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). African Journal of Biotechnology, 9(13), 1911–1918. https://doi.org/10.5897/AJB09.1526

Haq, T. U., Javaid, A., Nawaz, S., Ahmad, R., (2009). Morpho-physiological response of rice (Oryza sativa L.) varieties to salinity stress. Pakistan Journal of Botany, 41(6), 2943-2956.

Hosseini, S. J., Sarvestani, Z. T., & Pirdashti, H. (2012). Analysis of tolerance indices in some rice (Oryza sativa L.) genotypes at salt stress condition. International Research Journal of Applied and Basic Sciences, 3(1), 1-10.

Hussain, S., Zhang, J., Zhong, C., Zhu, L., Cao, X., Yu, S., Allen Bohr, J., Hu, J., & Jin, Q. (2017). Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Journal of Integrative Agriculture, 16(11), 2357–2374. https://doi.org/10.1016/S2095-3119(16)61608-8

Hussain, S., Zhong, C., Bai, Z., Cao, X., Zhu, L., Hussain, A., Zhu, C., Fahad, S., James, A. B., Zhang, J., & Jin, Q. (2018). Effects of 1-Methylcyclopropene on rice growth characteristics and superior and inferior spikelet development under salt stress. Journal of Plant Growth Regulation, 37(4), 1368–1384. https://doi.org/10.1007/s00344-018-9800-4

Instituto Nacional de Meteorología e Hidrología (INAMHI). (2019). Main page. https://www.inamhi.gob.ec/

Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, 30(5), 435–458. https://doi.org/10.1080/07352689.2011.605739

Jat Baloch, M. Y., Zhang, W., Sultana, T., Akram, M., Shoumik, B. A. Al, Khan, Md. Z., & Farooq, M. A. (2023). Utilization of sewage sludge to manage saline–alkali soil and increase crop production: Is it safe or not? Environmental Technology & Innovation, 32, 103266. https://doi.org/10.1016/j.eti.2023.103266

Javaid, T., Farooq, M. A., Akhtar, J., Saqib, Z. A., & Anwar-ul-Haq, M. (2019). Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl− and mineral ions. Plant Physiology and Biochemistry, 141, 291–299. https://doi.org/10.1016/j.plaphy.2019.06.010

Joseph, B., & Jini, D. (2010). Salinity induced programmed cell death in plants: Challenges and opportunities for salt-tolerant plants. Journal of Plant Sciences, 5(4), 376–390. https://doi.org/10.3923/jps.2010.376.390

Khatab, I. A., Farid, M. A., Abu amo, A. G., & El-Refaee, Y. Z. (2022). Screening of some rice genotypes for salinity tolerance using agro-morphological and SSR markers. Chilean Journal of Agricultural Research, 82(2), 211–224. https://doi.org/10.4067/S0718-58392022000200211

Läuchli, A., & Grattan, S. R. (2007). Plant growth and development under salinity stress. In M. A. Jenks, P. M. Hasegawa, & S. M. Jain (Eds.), Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops (pp. 1–32). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5578-2_1

Läuchli, A., & Grattan, S. R. (2011). Plant Responses to Saline and Sodic Conditions. In Agricultural Salinity Assessment and Management (pp. 169–205). American Society of Civil Engineers. https://doi.org/10.1061/9780784411698.ch06

Mahmood, A., Latif, T., & Khan, M. A. (2009). Effect of salinity on growth, yield and yield components in Basmati rice germplasm. Pakistan Journal of Botany, 41(6), 3035-3045. http://www.pakbs.org/pjbot/PDFs/41(6)/PJB41(6)3035.pdf

Medina-Litardo, R. C., García Bendezú, S. J., Carrillo Zenteno, M. D., Pérez-Almeida, I. B., Parismoreno, L. L., & Lombeida García, E. D. (2022). Effect of mineral and organic amendments on rice growth and yield in saline soils. Journal of the Saudi Society of Agricultural Sciences, 21(1), 29–37. https://doi.org/10.1016/j.jssas.2021.06.015

Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167(3), 645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x

Munns, R., & James, R. A. (2003). Screening methods for salinity tolerance: A case study with tetraploid wheat. Plant and Soil, 253(1), 201–218. https://doi.org/10.1023/A:1024553303144

Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025–1043. https://doi.org/10.1093/jxb/erj100

Muñoz Murcillo, J. L., Gentili, J., & Bustos Cara, R. (2020). Uso agrícola del suelo y demanda de agua para riego en la cuenca del río Vinces (Ecuador) durante el período 1990 – 2014. Investigaciones Geográficas, 59, 91. https://doi.org/10.5354/0719-5370.2020.56958

Nadew, D. (2022). Salt tolerance breeding in rice: A review article. International Research Journal of Plant and Crop Sciences, 7(2), 221-229. https://advancedscholarsjournals.org/journal/irjpcs/articles/salt-tolerance-breeding-in-rice-a-review-article

Negrão, S., Courtois, B., Ahmadi, N., Abreu, I., Saibo, N., & Oliveira, M. M. (2011). recent updates on salinity stress in rice: From Physiological to Molecular Responses. Critical Reviews in Plant Sciences, 30(4), 329–377. https://doi.org/10.1080/07352689.2011.587725

Neumann, P. M., Azaizeh, H., & Leon, D. (1994). Hardening of root cell walls: A growth inhibitory response to salinity stress. Plant, Cell & Environment, 17(3), 303–309. https://doi.org/10.1111/j.1365-3040.1994.tb00296.x

Pan, L., Xu, T., Wang, J., Zhao, J., Sun, Q., Hu, X., Tao, X., Zhang, J., Liao, L., & Wang, Z. (2024). Root-sourced H2O2 is essential for maintaining jasmonic acid and Na+/K+ homeostasis to delay leaf senescence during salt stress in Paspalum vaginatum. Horticultural Plant Journal, S2468014124001882. https://doi.org/10.1016/j.hpj.2024.04.009

Pozo, W., Sanfeliu, T., & Carrera, G. (2010). Variabilidad espacial temporal de la salinidad del suelo en los humedales de arroz en la Cuenca Baja del Guayas Sudamérica. Revista Tecnológica, 23, 73-79. http://www.rte.espol.edu.ec/index.php/tecnologica/article/download/38/10

Reddy, I. N. B. L., Kim, B.-K., Yoon, I.-S., Kim, K.-H., & Kwon, T.-R. (2017). Salt Tolerance in Rice: Focus on Mechanisms and Approaches. Rice Science, 24(3), 123–144. https://doi.org/10.1016/j.rsci.2016.09.004

Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124. https://doi.org/10.1016/j.copbio.2013.12.004

Sankar, P. D., Saleh, M. A. M., & Selvaraj, C. I. (2011). Rice breeding for salt tolerance. Research in Biotechnology, 2(2), 1–10.

Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

Singh, R. K., Kota, S., & Flowers, T. J. (2021). Salt tolerance in rice: Seedling and reproductive stage QTL mapping come of age. Theoretical and Applied Genetics, 134(11), 3495–3533. https://doi.org/10.1007/s00122-021-03890-3

Singh, R.K., Mishra, B., & Jetly, V., (2001). Segregations for alkalinity tolerance in three rice crosses. Sabrao Journal of Breeding and Genetics, 33, 31-34.

Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503–527. https://doi.org/10.1093/aob/mcg058.

Thomson, W. W., Faraday, C. D., & Oros, J. W. (1988). Salt glands. In: Baker, D.A.: Hall, J. L. (eds.). Solute Transport in Plant Cell and Tissues. Harlow: Longman Scientific and Technical. p. 498-537.

Villarruel, C., Aguilar, P. S., & Ponce Dawson, S. (2021). High rates of calcium-free diffusion in the cytosol of living cells. Biophysical Journal, 120(18), 3960–3972. https://doi.org/10.1016/j.bpj.2021.08.019

Zeng, L., & Shannon, M. C. (2000). Effects of salinity on grain yield and yield components of rice at different seeding densities. Agronomy Journal, 92(3), 418–423. https://doi.org/10.2134/agronj2000.923418x

Zeng, L., Shannon, M. C., & Grieve, C. M. (2002). Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica, 127(2), 235–245. https://doi.org/10.1023/A:1020262932277

Zeng, L., Shannon, M. C., & Lesch, S. M. (2001). Timing of salinity stress affects rice growth and yield components. Agricultural Water Management, 48(3), 191–206. https://doi.org/10.1016/S0378-3774(00)00146-3

Zhao, X., Guo, P., Wu, X., Zhu, M., Kang, S., Du, T., Kang, J., Chen, J., Tong, L., & Ding, R. (2024). Optimizing cotton growth in saline soil: Compound microbial agent modulates indigenous bacteria to enhance photosynthesis and vegetative-reproductive balance. Industrial Crops and Products, 221, 119286. https://doi.org/10.1016/j.indcrop.2024.119286




DOI: http://doi.org/10.17503/agrivita.v47i2.4466

Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.