Genotypic Variability of Total Phenolic Compounds and Antioxidant Activity in Jerusalem Artichoke (Helianthus tuberosus L.) Germplasm
Abstract
This research examines the variability in tuber yield, yield component, phenolic compounds, and antioxidant activity of twenty-five Jerusalem artichoke genotypes. The field experiment is arranged using a randomized complete block design with three replications. The plant tubers are harvested at maturity and recorded for tuber dry weight, total phenolic content, and antioxidant activity. The results show significant genetic variations in tuber dry weight, phenolic content, and antioxidant activity determined by FRAP and ABTS methods. Significant and positive correlations are found among individual tuber dry weight, number of tubers per plant, tuber dry weight, including phenolic content, and antioxidant activity determined by the FRAP method. Jerusalem artichoke genotypes are classified into five groups based on tuber dry weight, phenolic content, and antioxidant activity determined by DPPH and FRAP methods. KT504 is identified as the accession with high levels of tuber dry weight, phenolic content, and antioxidant activity, and this genotype might be used as a material source for the pharmaceutical industry. Total phenolic content in the tuber can serve as an index for selecting Jerusalem artichoke genotypes with direct high antioxidant activity.
Keywords
Full Text:
PDFReferences
Augusto, T. R., Scheuermann Salinas, E. S., Alencar, S. M., D’arce, M. A. B. R., Costa de Camargo, A., & Vieira, T. M. F. d. S. (2014). Phenolic compounds and antioxidant activity of hydroalcoholic extract of wild and cultivated murtilla (Ugni molinae Turcz). Food Science and Technology Campinas, 34(4), 667–673. DOI
Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. DOI
Boo, H. O., Heo, B. G., & Gorinstein, S. (2012). Analytical methods for enzyme and DPPH radical scavenging activities of natural pigments from some plants. Food Analytical Methods, 5, 1354–1361. DOI
Bricker, A. A. (1989). MSTAT-C user’s guide. Michigan State University, East Lansing.
Chen, F., Long, X., Lui, Z., Shao, H., & Liu, L. (2014). Analysis of phenolic acids of Jerusalem artichoke (Helianthus tuberosus L.) responding to salt-stress by liquid chromatography/tandem mass spectrometry. The Scientific World Journal, 2014, 1–8. DOI
Dykes, L., & Rooney, L.W. (2007). Phenolic compounds in cereal grains and their health benefits. Cereal Foods World, 52(3), 105-111. DOI
Ferioli, F., Manco, M. A., & D’Antuono, L. F. (2015). Variation of sesquiterpene lactones and phenolics in chicory and endive germplasm. Journal of Food Composition and Analysis, 39, 77–86. DOI
Gupta, D., & Chaturvedi, N. (2020). Prebiotic potential of underutilized Jerusalem artichoke in Human Health: A comprehensive review. International Journal of Environment, Agriculture and Biotechnology, 5(1), 97–103. DOI
Harakotr, B., Suriharn, B., Scott, M. P., & Lertrat, K. (2015). Genotypic variability in anthocyanins, total phenolics, and antioxidant activity among diverse waxy corn germplasm. Euphytica, 203, 237–248. DOI
Kapusta, I., Krok, E. S., Jamro, D. B., Cebulak, T., Kaszuba, J., & Salach, R. T. (2013). Identification and quantification of phenolic compounds from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Journal of Food, Agriculture and Environment, 11(3 and 4): 601-606.
Khaopha, S., Senawong, T., Jogloy, S., & Patanothai, A. (2012). Comparison of total phenolic content and composition of individual phenolic acids in testae and testa-removed kernels of 15 Valencia-type peanut (Arachis hypogeae L.) genotypes. African Journal of Biotechnology, 11(92), 15923-15930. DOI
Kim, D., Fan, J.P, Chung, H.C., & Han, G.D. (2010). Changes in extractability and antioxidant activity of Jerusalem artichoke (Helianthus tuberosus L.) tubers by various high hydrostatic pressure treatments. Food Science and Biotechnology. 19(5): 1365-1371. DOI
Lachman, J., Fernández, E. C., Viehmannová, I., Šulc, M., & Čepková, P. (2007). Total phenolic content of yacon (Smallanthus sonchifolius) rhizomes, leaves, and roots affected by genotype. New Zealand Journal of Crop and Horticultural Science, 35, 117-123. DOI
Liu, L.L., Wang, H.Y., Yan, H., & Kong, T. (2009). Research on extraction technology and antioxidant activity of flavonoids from Jerusalem artichoke. 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, 1–4. DOI
Nur Diyana, A., Puteh, F., Mohd. Zulkifli, N. I., & Hasnan, N.Z.N. (2021). Evaluation of total phenolic content and antioxidant activities from different extraction techniques of Helianthus tuberosus. Advances in Agricultural and Food Research Journal, 2(1), a0000165. DOI
Pan, L., Sinden, M. R., Kennedy, A. H., Chai, H., Watson, L. E., Graham, T. L., & Kinghorn, A. D. (2009). Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke). Phytochemistry Letters, 2, 15–18. DOI
Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278. DOI
Plangklang, T., & Tangwongchai, R. (2011). Quality attribute and antioxidant activity changes of Jerusalem artichoke tubers (Helianthus tuberosus L.) during storage at different temperatures. Thai Journal of Agricultural Science, 44(5), 204-212.
Qader, S. W., Abdulla, M. A., Chua, L. S., Najim, N., Zain, M. M., & Hamdan, S. (2011). Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants. Molecules, 16, 3433–3443. DOI
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evan, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. DOI
Rubel, I. A., Iraporda, C., Manrique, G. D., Genovese, D. B., & Abraham, A. G. (2021). Inulin from Jerusalem artichoke (Helianthus tuberosus L.): From its biosynthesis to its application as bioactive ingredient. Bioactive Carbohydrates and Dietary Fibre, 26, 100281. DOI
Ruttanaprasert, R., Banterng, P., Jogloy, S., Vorasoot, N., Kesmala, T., Kanwar, R. S., Holbrook, C. C., & Patanothai, A. (2014). Genotypic variability for tuber yield, biomass and drought tolerance in Jerusalem artichoke germplasm. Turkish Journal of Agriculture and Forestry, 38(4), 16. DOI
Ruttanaprasert, R., Jogloy, S., Vorasoot, N., Kesmala, T., Kanwar, R.S., Holbrook, C.C., & Patanothai, A. (2016). Effect of water stress on total biomass, tuber yield, harvest index and water use efficiency in Jerusalem artichoke. Agricultural Water Management, 166, 130-138. DOI
Sikora, V., Berenji, J., & Latković, D. (2010). Yield component analysis and diversity in Jerusalem artichoke (Helianthus tuberosus L.). Helia, 33(53), 37-44. DOI
Slimestad, R., Seljaasen, R., Meijer, K., & Skar, S.L. (2010). Norwegian-grown Jerusalem artichoke (Helianthus tuberosus L.): Morphology and content of sugars and fructo-oligosaccharides in stems and tubers. Journal of the Science of Food and Agriculture, 90(6), 956–964. DOI
Tchoné, M., Bärwald, G., Annemüller, G., & Fleischer, L. (2006). Séparation et identification des composés phénoliques du topinambour (Helianthus tuberosus L.). Sciences Des Aliments, 26(5), 394–408. DOI
Turumtay, E. A., İslamoğlu, F., Çavuş, D., Şahin, H., Turumtay, H., & Vanholme, B. (2014). Correlation between phenolic compounds and antioxidant activity of Anzer tea (Thymus praecox Opiz subsp. caucasicus var. caucasicus). Industrial Crops and Products, 52, 687–694. DOI
Yuan, X., Gao, M., Xiao, H., Tan, C., & Du, Y. (2012). Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chemistry, 133, 10–14. DOI
DOI: http://doi.org/10.17503/agrivita.v46i3.4413
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.