Growth, Yield, and Nutrient Content of Habanero Chili (Capsicum chinense) in Response to Different Pineapple Leaf Biochar and Trichoderma Biofertilizer Ratios

Suraiya Mahdian, Hasmah Mohidin, Khadijah Khalid, Rosazlin Abdullah, Nurmaliena Rosli, Syahira Jos

Abstract


Culturing Capsicum chinense using a fertigation system necessitates a significant amount of chemical fertilizer, leading to diminishing nutrient levels in both the crop and the growing medium over time. This study investigates an alternative method: recycling pineapple leaves into biochar and combining it with Trichoderma biofertilizer (TBF) to enhance crop growth, yield, and nutrient content. Conducted in a randomized complete block design (RCBD) under rain shelter conditions, seven treatments are tested: T0 (Commercial chemical fertilizer - Control), T1 (Commercial organic fertilizer), T2 (100% pineapple leaf biochar [PLB]), T3 (100% TBF), T4 (75% PLB + 25% TBF), T5 (50% PLB + 50% TBF), and T6 (25% PLB + 75% TBF). The parameters measured include growth, yield, and nutrient content of the total plant biomass after destructive sampling. The treatment with 75% PLB and 25% TBF yielded results comparable to the control, significantly enhancing plant height (68.24 cm), stem diameter (1.12 cm), SPAD chlorophyll content (53.83), yield (403.69 g), total plant biomass (156.13 g), and nutrient content. While the control (T0) shows the highest values for some growth parameters, T4 emerges as the most promising ratio, offering significantly higher mean values for both growth and yield parameters among the organic treatments studied.

Keywords


Capsicum chinense; Chemical fertilizer; Organic amendments; Pineapple leaf biochar; Trichoderma biofertilizer

Full Text:

PDF

References


Abid, M., Danish, S., Zafar-ul-Hye, M., Shaaban, M., Iqbal, M. M., Rehim, A., Qayyum, M. F., & Naqqash, M. N. (2017). Biochar increased photosynthetic and accessory pigments in tomato (Solanum lycopersicum L.) plants by reducing cadmium concentration under various irrigation waters. Environmental Science and Pollution Research, 24, 22111-22118. DOI

Arthanawa, I. G. N., Astika, I. N., Darmawan, I. K., Yana, D. P. S., Situmeang, Y. P., & Sudita, I. D. N. (2022). The effects of organic and inorganic fertilizers on red chili plants. SEAS (Sustainable Environment Agricultural Science), 6(1), 70-80. DOI

Atluri, S., Thakur, D., Bukke, D., & Ramawat, N. (2021). Evaluation of biofertilizers and biochar on the plant growth and productivity of soybean (Glycine max). International Journal of Plant & Soil Science, 33(15), 74–86. DOI

Bohari, N., Mohidin, H., Idris, J., Andou, Y., Man, S., Saidan, H., & Mahdian, S. (2020). Nutritional characteristics of biochar from pineapple leaf residue and sago waste. Pertanika Journal Science and Technology, 28 (S2), 273 – 286. DOI

Chatterjee, D., Dutta, S. K., Kikon, Z. J., Kuotsu, R., Sarkar, D., Satapathy, B. S., & Deka, B. C. (2021). Recycling of agricultural wastes to vermicomposts: Characterization and application for clean and quality production of green bell pepper (Capsicum annuum L.). Journal of Cleaner Production, 315(June), 128115. DOI

Ch'ng, H. Y., Ahmed, O. H., & Majid, N. M. A. (2016). Improving phosphorus availability, nutrient uptake and dry matter production of Zea mays L. on a tropical acid soil using poultry manure biochar and pineapple leaf compost. Experimental Agriculture, 52(3), 447-465. DOI

Choo, L. N. L. K., Ahmed, O. H., Majid, N. M. N., & Aziz, Z. F. A. (2021). Pineapple residue ash reduces carbon dioxide and nitrous oxide emissions in pineapple cultivation on tropical peat soils at Saratok, Malaysia. Sustainability, 13(3), 1014. DOI

Claoston, N., Samsuri, A. W., Ahmad Husni, M. H., & Mohd Amran, M. S. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management & Research, 32(4), 331-339. DOI

Danish, S., & Zafar-ul-Hye, M. (2019). Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Scientific reports, 9(1), 1-13. DOI

Doni, F., Zain, C. R. C. M., Isahak, A., Fathurrahman, F., Sulaiman, N., Uphoff, N., & Yusoff, W. M. W. (2017). Relationships observed between Trichoderma inoculation and characteristics of rice grown under System of Rice Intensification (SRI) vs. conventional methods of cultivation. Symbiosis, 72(1), 45–59. DOI

Eo, J., & Park, K. C. (2016). Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community. Agriculture, Ecosystems and Environment, 231, 176–182. DOI

Halifu, S., Deng, X., Song, X., & Song, R. (2019). Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests, 10(9), 1–17. DOI

Hanyabui, E. (2020). Effect of pineapple waste biochar and compost application on pineapple yield and quality in a low nutrient Coastal Savanna Acrisol. Doctoral dissertation, University of Cape Coast.

Harman, G. E. (2011). Trichoderma-not just for biocontrol anymore. Phytoparasitica, 39, 103-108. DOI

Jaaf, S. M. M. A., Li, Y., Günal, E., El Enshasy, H. A., Salmen, S. H., & Sürücü, A. (2022). The impact of corncob biochar and poultry litter on pepper (Capsicum annuum L.) growth and chemical properties of a silty-clay soil. Saudi Journal of Biological Sciences, 29(4), 2998-3005. DOI

Japakumar, J., Abdullah, R., & Rosli, N. S. M. (2021). Effects of biochar and compost application on soil properties and growth performance of Amaranthus sp. grown at urban community garden. AGRIVITA, Journal of Agricultural Science, 43(3), 441-453. DOI

Kaewsalong, N., Songkumarn, P., Duangmal, K., & Dethoup, T. (2019). Synergistic effects of combinations of novel strains of Trichoderma species and Coscinium fenestratum extract in controlling rice dirty panicle. Journal of Plant Pathology, 101, 367-372. DOI

Lai, C. H., Settinayake, A. R. H., Yeo, W. S., Lau, S. W., & Jong, T. K. (2019). Crop Nutrients review and the impact of fertilizer on the plantation in Malaysia: A mini review. Communications in Soil Science and Plant Analysis, 50(17), 2089-2105. DOI

Lehmann, J., da Silva Jr., J. P., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343–357. DOI

Maru, A., Haruna, O. A., & Primus, W. C. (2015). Co-application of chicken litter biochar and urea only to improve nutrients use efficiency and yield of Oryza sativa L. cultivation on a tropical acid soil. The Scientific World Journal, 2015, 943853. DOI

Nahidan, S., Hashemi, S. & Zafari, D. (2019). Evaluation of phosphate solubilizing and potassium releasing ability of some Trichoderma species under in-vitro conditions. Iranian Journal of Soil and Water Research, 50(5), 1231- 1242. website

O'Laughlin, J., & McElligott, K. (2009). Biochar for environmental management: science and technology, Johannes Lehmann, Stephen M. Joseph (Eds.), Earthscan, London UK (2009), 448 p. Forest Policy and Economics, 11(7), 535–536. DOI

Rabiu, Z., Maigari, F. U., Lawan, U., & Mukhtar, Z. G. (2018). Pineapple waste utilization as a sustainable means of waste management. In Z. A. Zakaria (Ed.), Sustainable Technologies for the Management of Agricultural Wastes (pp. 143–154). Springer Singapore. DOI

Rawat, J., Saxena, J., & Sanwal, P. (2019). Biochar: A sustainable approach for improving plant growth and soil properties. In Biochar—An Imperative Amendment for Soil and the Environment. IntechOpen. DOI

Rivitra, V., Thevan, K., & Norhafizah, M. Z. (2021). Growth of chili plant (Capsicum annuum L.) treated with combined organic and inorganic fertilizer with Saccharomyces cerevisiae. IOP Conference Series: Earth and Environmental Science, 756(1), 012050. DOI

Sanchez-Reinoso, A. D., Ávila-Pedraza, E. Á., & Restrepo-Díaz, H. (2020). Use of biochar in agriculture. Acta Biológica Colombiana, 25(2), 327-338. DOI

Situmeang, Y. P., Sudita, I. D. N., & Suarta, M. (2019). Manure utilization from cows, goats, and chickens as compost, biochar, and poschar in increasing the red chili yield. International Journal on Advanced Science, Engineering and Information Technology, 9(6), 2088–2095. DOI

Wang, Y., Zhu, Y., Zhang, S., & Wang, Y. (2018). What could promote farmers to replace chemical fertilizers with organic fertilizers? Journal of Cleaner Production, 199, 882-890. DOI

Zainuddin, M. F., Shamsudin, R., Mokhtar, M. N., & Ismail, D. (2014). Physicochemical properties of pineapple plant waste fibers from the leaf and stems of different varieties. BioResources, 9(3), 5311-5324. DOI




DOI: http://doi.org/10.17503/agrivita.v47i1.4393

Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.