The Effects of Some Different Cultural Techniques on the Transmission and Infectious Development of Pepper Yellow Leaf Curl Indonesia Virus on Red Chili

Suparman Suparman, Arsi Arsi, Yulia Pujiastuti, Rahmat Pratama


An experiment is conducted to investigate the effects of cultural techniques on pepper yellow leaf curl disease caused by Pepper yellow leaf curl Indonesia virus (PepYLCIV). The investigation is conducted in the area where the disease has been endemic and Bemisia tabaci is abundant. Four cultural techniques are applied in separate lands and cannot interfere with each other. The methods applied are seed treatment, intercropping, trap cropping, and physical barrier. Seeds harvested from infected plants are used for seed treatment experiments, and local farmers use commercial sources for other experiments. The results confirmed that PepYLCIV was a seed-borne virus affected by hot water treatment at 65oC for 30 minutes. Turmeric crude extract could reduce the incidence and severity of the disease. The tomato is a better intercrop than eggplant, mung bean, and soybean in reducing disease incidence, but their effects on disease severity and yield reduction were not significantly different. Basil and marigolds were better barrier crops compared to cosmos and zinnia. A 125 cm high physical barrier using 50 mesh cheesecloth could reduce the disease incidence, but not the lower ones. Under different cultural techniques, PepYLCIV causes a 40.00–52.32% chili yield reduction.


Bemisia tabaci; Cultural technique; Pepper yellow leaf curl Indonesia virus; Seed treatment

Full Text:



Acharya, R. S., Leslie, T., Fitting, E., Burke, J., Loftin, K., & Joshi, N. K. (2021). Color of pan trap influences sampling of bees in livestock pasture ecosystem. Biology, 10(5), 445. DOI

Aini, N., Yamika, W. S. D., Aini, L. Q., & Firdaus, M. J. (2020). The effect of plant spacing and planting model on multiple cropping of red chili (Capsicum annuum L.) and shallot (Allium ascalonicum L.) under saline soil conditions. Indian Journal of Agricultural Research, 54(3), 349-354. DOI

Aji, T. M., Hartono, S., & Sulandari, S. (2015). Pengelolaan kutu kebul (Bemisia tabaci Gen.) dengan sistem barier pada tanaman tembakau. Jurnal Perlindungan Tanaman Indonesia, 15(1), 6–11. DOI

Al Hadhrami, S., Al Battashi, A., & Al Hashami, H. (2022). Turmeric (Curcuminoids): A possible effective antiviral herb. Advances in Infectious Diseases, 12(01), 159–62. DOI

Basit, M. (2019). Status of insecticide resistance in Bemisia tabaci: Resistance, cross-resistance, stability of resistance, genetics and fitness costs. Phytoparasitica, 47(2), 207–225. DOI

Berdjour, A., Dugje, I. Y., Dzomeku, I. K., & Rahman, N. A. (2020). Maize–soybean intercropping effect on yield productivity, weed control and diversity in Northern Ghana. Weed Biology and Management, 20(2), 69–81. DOI

Boudreau, M. A. (2013). Diseases in intercropping systems. Annual Review of Phytopathology, 51, 499–519. DOI

Bueso, E., Serrano, R., Pallás, V., & Sánchez-Navarro, J. A. (2017). Seed tolerance to deterioration in Arabidopsis is affected by virus infection. Plant Physiology and Biochemistry, 116, 1–8. DOI

Czosnek, H., Hariton-Shalev, A., Sobol, I., Gorovits, R., & Ghanim, M. (2017). The incredible journey of begomoviruses in their whitefly vector. Viruses, 9(10), 273. DOI

Diabate, S., Martin, T., Murungi, L. K., Fiaboe, K. K. M., Subramanian, S., Wesonga, J., & Deletre, E. (2019). Repellent activity of Cymbopogon citratus and Tagetes minuta and their specific volatiles against Megalurothrips sjostedti. Journal of Applied Entomology, 143(8), 855-866. DOI

Dikr, W., & Belete, K. (2021) Intercropping of African marigold (Tagetes erecta Linnaeus (Asteraceae)) varieties at different plant density with tomato (Solanum iycopersicum Linnaeus (Solanaceae)) on yield related traits and yield of tomato at Wondo Genet, Southern Ethiopia. Journal of Biology, Agriculture and Healthcare, 11(6), 1-11. DOI

Dombrovsky, A., & Smith, E. (2017). Seed transmission of Tobamoviruses: Aspects of global disease distribution. In J. C. Jimenez-Lopez (Ed.), Advances in Seed Biology. InTech. DOI

Fabrick, J. A., Yool, A. J., & Spurgeon, D. W. (2020). Insecticidal activity of marigold Tagetes patula plants and foliar extracts against the hemipteran pests, Lygus hesperus and Bemisia tabaci. PLOS ONE, 15(5), e0233511. DOI

Fadhila, C., Lal, A., Vo, T. T. B., Ho, P. T., Hidayat, S. H., Lee, J., Kil, E. J., & Lee S. (2020). The threat of seed-transmissible Pepper Yellow Leaf Curl Indonesia Virus in chili pepper. Microbial Pathogenesis, 143, 104132. DOI

Farajollahi, A., Gholinejad, B., & Jafari, H. J. (2014). Effects of different treatments on seed germination improvement of Calotropis persica. Advances in Agriculture, 2014, 245686. DOI

Gaswanto, R., Syukur, M., Hidayat, S. H., & Gunaeni, N. (2016). Identifikasi gejala dan kisaran inang enam isolat begomovirus cabai di Indonesia. Jurnal Hortikultura, 26(2), 223-234. DOI

González-Valdivia, N. A., Martínez-Puc, J. F., Arcocha Gómez, E., Casanova-Lugo, F., Burgos-Campos, M. A., Rodríguez Puig, E., Rojas Ehuan, E., & Echavarría-Góngora, E. J. (2017). Effectivity of three botanical crude extracts on immature of whitefly (Bemisia tabaci Genn.) under enclosure conditions. Journal of Biopesticides, 10(1), 71–76. DOI

Grasswitz, T. R. (2019). Integrated Pest Management (IPM) for small-scale farms in developed economies: Challenges and opportunities. Insects, 10(6), 179. DOI

Hamidson, H., Damiri, N., & Angraini, E. (2018). Effect of medicinal plants extracts on the incidence of mosaic disease caused by Cucumber Mosaic Virus and growth of chili. IOP Conference Series: Earth and Environmental Science, 102, 012062. DOI

Hardiansyah, M. Y., Hartini, & Musa, Y. (2021). Agrobiodiversity of using refugia plants towards several plant gardens at Tulung Rejo, East Java. IOP Conference Series: Earth and Environmental Science, 886 (2021) 012066. DOI

Harish, E. R., Chellappan, M., Kumar, T. M., Ranjith, M. T., & Ambavane, A. R. (2016). Morphometric variations in cassava (Manihot esculenta Crantz) whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) from different agro-ecological zones of Kerala, India. Journal of Root Crops, 42(2), 90–102. website

Husna, I., Setyaningrum, E., Handayani, T. T., Kurnia, Y., Palupi, E. K., Umam, R, & Andriana, B. B. (2020). Utilization of basil leaf extract as anti-mosquito repellent: A case study of total mosquito mortality (Aedes aegypti 3rd Instar). Journal of Physics: Conference Series, 1467(1), 012014. DOI

Jennings, M. R., & Parks, R. J. (2020). Curcumin as an antiviral agent. Viruses, 12(11), 1242. DOI

John, W. C., Ihum, T. A., Olusolape, O., & Janfa, N. (2018). Efficacy of turmeric rhizome (Curcuma longa) and moringa leaf (Moringa oleifera) extract in treatment against fungi associated with maize seeds. Asian Plant Research Journal, 1(2), 1–8. DOI

Kabede, M., Ayalew, A., & Yeesuf, M. (2013). Efficacy of plant extracts, traditional materials and antibacterial chemicals against Xanthomonas campestris Pv. vesictoria on tomato seed. African Journal of Microbiology Research, 7(20), 2395–2400. DOI

Kanakala, S., & Ghanim, M. (2016). Implication of the whitefly Bemisia tabaci cyclophilin B protein in the transmission of Tomato yellow leaf curl virus. Frontiers in Plant Science, 7, 1–13. DOI

Kenyon, L., Kumar, S., Tsai, W.-S., & Hughes, J. d’A. (2014). Virus diseases of peppers (Capsicum spp.) and their control. In Advances in Virus Research (Vol. 90, pp. 297–354). Elsevier. DOI

Kil, E.-J., Vo, T. T. B., Fadhila, C., Ho, P. T., Lal, A., Troiano, E., Parrella, G., & Lee, S. (2020). Seed transmission of Tomato Leaf Curl New Delhi Virus from Zucchini Squash in Italy. Plants, 9(5), 563. DOI

Kim, M., Shim, C., Lee, J., & Wangchuk, C. (2022). Hot water treatment as seed disinfection techniques for organic and eco-friendly environmental agricultural crop cultivation. Agriculture, 12(8), 1081. DOI

Kothandaraman, S. V., Devadason, A., & Ganesan, M. V. (2016). Seed-borne nature of a begomovirus, Mung bean Yellow Mosaic Virus in black gram. Applied Microbiology and Biotechnology, 100(4), 1925–1933. DOI

Lapidot, M., Legg, J. P., Wintermantel, W. M., & Polston, J. E. (2014). Management of whitefly-transmitted viruses in open-field production systems. In Loebenstein, G., and Katis, N. (Eds), Advance in Virus research, (pp 147-206). Elsevier. DOI

Lavanya, R., & Arun, V. (2021). Detection of Begomovirus in chilli and tomato plants using functionalized gold nanoparticles. Scientific Reports, 11(1), 14203. DOI

Li, Y., Mbata, G. N., Punnuri, S., Simmons, A. M., & Shapiro-Ilan, D. I. (2021). Bemisia tabaci on Vegetables in the Southern United States: Incidence, Impact, and Management. Insects, 12(3), 198. DOI

Liang, J., He, Z., & Shi, W. (2020). Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China. Agricultural Water Management, 240,106277. DOI

Lu, S., Chen, M., Li, J., Shi, Y., Gu, Q., & Yan, F. (2019). Changes in Bemisia tabaci feeding behaviors caused directly and indirectly by Cucurbit Chlorotic Yellows Virus. Virology Journal, 16(1), 106. DOI

MacLeod, N., Canty, R. J., & Polaszek, A. (2022). Morphology-Based Identification of Bemisia tabaci Cryptic Species Puparia via Embedded Group-Contrast Convolution Neural Network Analysis. Systematic Biology, 71(5), 1095–1109. DOI

Maruthi, M. N., Jeremiah, S. C., Mohammed, I. U., & Legg, J. P. (2017). The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. Journal of Phytopathology, 165(11–12), 707–717. DOI

Mir, M. S., Saxena, A., Kanth, R. H., Raja, W., Dar, K. A., Mahdi, S. S., Bhat, T. A., Naikoo, N. B., Nazir, A., Amin, Z., Mansoor, T., Myint, M. Z., Khan, M.R., Mohammad, I., & Mir, S. A. (2022). Role of intercropping in sustainable insect-pest management: A review. International Journal of Environment and Climate Change, 12(11), 3390-3404. DOI

Nallathambi, P., Umamaheswari, C., Lal, S. K., Manjunatha, C., & Berliner, J. (2020). Mechanism of seed transmission and seed infection in major agricultural crops in India. In Kumar, R. and Gupta, A. (Eds.), Seed-borne diseases of agricultural crops: Detection, diagnosis & management (pp 749-791). Singapore, Springer. DOI

Pagán, I. (2022). Transmission through seeds: The unknown life of plant viruses. PLoS Pathogens, 18(8), e1010707. DOI

Parihar, T. J., Sofi, M. Y., Rasool, R. S., Khursheed, S., Bhat, Z. A., Hussain, K., Dhekale, B., Zargar, S. M., Hakak, A. S., Shah, M. D., Nehvi, F. A., Bhat, M. A., Khan, M. N., & Masoodi, K. Z. (2022). Fusarium chlamydosporum, causing wilt disease of chili (Capsicum annum L.) and brinjal (Solanum melongena L.) in Northern Himalayas: a first report. Scientific Reports, 12, 20392. DOI

Patra, B., & Kumar Hath, T. (2022). Insecticide resistance in whiteflies Bemisia tabaci (Gennadius): Current global status. In R. Eduardo Rebolledo Ranz (Ed.), Insecticides—Impact and Benefits of Its Use for Humanity. IntechOpen. DOI

Paylan, İ. C., Erkan, S., Cetinkaya, N., Ergun, M., & Pazarlar, S. (2014). Effects of different treatments on the inactivation of various seedborne viruses in some vegetables. Ozone: Science and Engineering, 36(5), 422–26. DOI

Pérez-Padilla, V., Fortes, I. M., Romero-Rodríguez, B., Arroyo-Mateos, M., Castillo, A. G., Moyano, C., de León, L., & Moriones, E. (2020). Revisiting seed transmission of the type strain of Tomato Yellow Leaf Curl Virus in tomato plants. Phytopathology, 110(1), 121–29. DOI

Pribadi, D. U., Purnawati, A., & Rahmadhini, N. (2020). Penerapan sistem pertanaman refugia sebagai mikrohabitat musuh alami pada tanaman padi. Jurnal SOLMA, 9(1), 221–30. DOI

Purushothaman, B., Srinivasan, R. P., Suganthi, P., Ranganathan, B., Gimbun, J., & Shanmugam, K. A comprehensive review on Ocimum basilicum. Journal of Natural Remedies, 18(3), 71–85. DOI

Putra, F. P., & Sas, M. G. A. (2023). The intercropping system of rice and soybean in coastal sand area. International Journal of Scientific and Research Publications, 13(4), 323–27. DOI

Pym, A., Singh, K. S., Nordgren, Å., Davies, T. G. E., Zimmer, C. T., Elias, J., Slater, R., & Bass, C. (2019). Host plant adaptation in the polyphagous whitefly, Trialeurodes vaporariorum, is associated with transcriptional plasticity and altered sensitivity to insecticides. BMC Genomics, 20(1), 996. DOI

Reynolds, D. R., Chapman, J. W., & Drake, V. A. (2017). Riders on the Wind: The Aeroecology of Insect Migrants. In P. B. Chilson, W. F. Frick, J. F. Kelly, & F. Liechti (Eds.), Aeroecology (pp. 145–178). Springer International Publishing. DOI

Roy, B., Chakraborty, P., & Ghosh, A. (2021). How many begomovirus copies are acquired and inoculated by its vector, whitefly (Bemisia tabaci) during feeding? PLOS ONE, 16(10), e0258933. DOI

Saberi, A. R. (2018). Comparison of intercropped sorghum-soybean compared to its sole cropping. Biomedical Journal of Scientific & Technical Research, 2(1), 2392–2397. DOI

Sarjan, M., Haryanto, H., Supeno, B., & Jihadi, A. (2023). Using the refugia plant as an alternative habitat for predatory insects on potato plants. Jurnal Biologi Tropis, 23(2), 203–207. DOI

Sastry, K. S. (2013). Seed-borne plant virus diseases. Springer India. DOI

Setyaningrum, E., Unih, A. S., Pratami, G. D., & Kanedi, M. (2023). Repellent effect of plant leaves extract of tomato (Solanum lycopersicum L.) against Aedes aegypti mosquitoes. World Journal of Biology Pharmacy and Health Sciences, 13(1), 198–202. DOI

Shah, M. M. R., & Liu T-X. (2013). Feeding experience of Bemisia tabaci (Hemiptera: Aleyrodidae) affects their performance on different host plants. PLoS ONE, 8(10), e77368. DOI

Shao, X., Cheng, K., Wang, Z., Zhang, Q., & Yang X. (2021). Use of odor by host-finding insects: the role of real-time odor environment and odor mixing degree. Chemoecology, 31(3), 149–158. DOI

Singh, S., Awasthi, L. P., Jangre, A., & Nirmalkar, V. K. (2020). Transmission of Plant Viruses through Soil-Inhabiting Nematode Vectors. In. Awasthi, L. P. (Ed.) Applied Plant Virology (pp 291-300). India, Academic Press. DOI

Singh, S., Singh, H., & Bharat, N. K. (2020). Hot Water Seed Treatment: A Review. In A. Dekebo (Ed.), Capsicum. IntechOpen. DOI

Siregar, J. J., & Suroso, A. I. (2021). Big Data Analytics Based Model for Red Chili Agriculture in Indonesia. In F. Saeed, F. Mohammed, & A. Al-Nahari (Eds.), Innovative Systems for Intelligent Health Informatics (Vol. 72, pp. 554–564). Springer International Publishing. DOI

Subiastuti, A. S., Hartono, S., & Daryono, B. S. (2019). Detection and identification of begomovirus infecting cucurbitaceae and solanaceae in Yogyakarta, Indonesia. Biodiversitas, 20(3), 738–744. DOI

Suprapta, D. N. (2022). Biocontrol of anthracnose disease on chili pepper using a formulation containing Paenibacillus polymyxa C1. Frontiers in Sustainable Food Systems, 5, 782425. DOI

Syafruddin & Suwardi. (2020). Intercropping of maize-mungbean to increase the farmer's income. IOP Conference Series: Earth and Environmental Science, 484, 012054. DOI

Temeche, D., Getachew, E., Hailu, G., & Abebe, A. (2022). Effect of sorghum-mung bean intercropping on sorghum-based cropping system in the lowlands of North Shewa, Ethiopia. Advances in Agriculture, 2022, 6987871. DOI

Tillman, P. G. (2014). Physical barriers for suppression of movement of adult stink bugs into cotton. Journal of Pest Science, 87(3), 419-427. DOI

Udiarto, B. K., Setiawati, W., Muharam, A., & Dadi. (2023). Seedling protection and barrier crops in chili pepper to reduce whitefly denseness and prevalence of pepper yellow leaf curl virus. IOP Conference Series: Earth and Environmental Science, 1172(1), 012029. DOI

Utami, D., Meale, S. J., & Young, A. J. (2022). A pan-global study of bacterial leaf spot of chilli caused by Xanthomonas spp. Plants, 11(17), 2291. DOI

Wang, F., Liu, J., Chen, P., Li, H.-Y., Ma, J.-J., Liu, Y.-J., & Wang, K. (2020). Bemisia tabaci (Hemiptera: Aleyrodidae) Insecticide Resistance in Shandong Province, China. Journal of Economic Entomology, 113(2), 911–917. DOI

Waweru, B. W., Rukundo, P., Kilalo, D. C., Miano, D. W., & Kimenju, J. W. (2021). Effect of border crops and intercropping on aphid infestation and the associated viral diseases in hot pepper (Capsicum sp.). Crop Protection, 145, 105623. DOI

Xie, W., Guo, L., Jiao, X., Yang, N., Yang, X., Wu, Q., Wang, S., Zhou, X., & Zhang, Y. (2014). Transcriptomic dissection of sexual differences in Bemisia tabaci, an invasive agricultural pest worldwide. Scientific Reports 4, 4088. DOI

Yadav, R. K., Reddy, K. M., Ashwathappa, K. V., Kumar, M., Naresh, P., & Reddy, M. K. (2022). Screening of Capsicum germplasm and inheritance of resistance to chilli leaf curl virus. Indian Phytopathology, 75, 1129–1136. DOI

Zaefarian, F., & Rezvani, M. (2016). Soybean (Glycine max [L.] Merr.) Production Under Organic and Traditional Farming. In Environmental Stresses in Soybean Production (pp. 103–129). Elsevier. DOI


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.