Changes in Acid-Sulfate Soil Characteristics with Biochar from Various Materials and their Effect on IR-Zinc Production

Muhammad Helmy Abdillah, Mila Lukmana, Linda Rahmawati, Gusti R. Iskarlia

Abstract


The extensification of paddy fields is the government's program for food security and nutrition, but it influences the destruction of acid-sulfate soils. This study aimed to assess the improvement result of acid-sulfate soil character applied biochar from local materials with the various doses and to determine the production of IR-Zinc after the treatments, as recommendations for farmers cultivation of IR-Zinc on acid-sulfate soil. The research was conducted in Karang Indah Village, Barito Kuala District, South Kalimantan, from November 2021 to July 2022. The design used was a randomized, complete experiment with two factors: the raw material and the application dose. Research objects consisted of bulk density, porosity, pyrite (FeS2), soil organic-C, number of productive tillers, and weight of dry-milled grain for each treatment. A test using Duncan’s Multiple Range Test (DMRT) at 5% was used to determine the source and dose of biochar that affected significant object changes. The results showed an interaction between raw material and dose levels of biochar. Rice husk biochar increased the yield of IR-Zinc with an application dose of 1.8 kg and improved the characteristics of acid-sulfate soil. Rice husk biochar can provide nutrients due to soil physico-chemical improvements in reducing bulk density and acidity.


Keywords


Acid-Sulfate; Biochar; Local Materials

Full Text:

PDF

References


Abdillah, M. H., & Widiyastuti, D. A. (2022). Peningkatan kualitas kimia tanah sulfat masam dengan aplikasi kombinasi bahan organik lokal dan limbah agroindustri (Improvement of chemical quality acid sulphate soil with application local organic matter combined agroindustrial wasted). Jurnal Ilmu Pertanian Indonesia, 27(1), 120–131. DOI

Abdulrazzaq, H., Jol, H., Husni, A., & Abu-Bakr, R. (2015). Biochar from empty fruit bunches, wood, and rice husks: Effects on soil physical properties and growth of sweet corn on acidic soil. Journal of Agricultural Science, 7(1), 192–200. DOI

Adhikari, S., Timms, W., & Mahmud, M. A. P. (2022). Optimising water holding capacity and hydrophobicity of biochar for soil amendment – A review. Science of The Total Environment, 851(1), 158043. DOI

Alghamdi, A. G., Alkhasha, A., & Ibrahim, H. M. (2020). Effect of biochar particle size on water retention and availability in a sandy loam soil. Journal of Saudi Chemical Society, 24(12), 1042–1050. DOI

Amrullah, A., Farobie, O., & Widyanto, R. (2021). Pyrolysis of purun tikus (Eleocharis dulcis): Product distributions and reaction kinetics. Bioresource Technology Reports, 13(100642), 1–8. DOI

Annisa, W., Mukhlis, M., & Hairani, A. (2021). Biochar-materials for remediation on swamplands: Mechanisms and effectiveness. Jurnal Sumberdaya Lahan, 15(1), 13–22. DOI

Ayaz, M., Feizienė, D., Tilvikienė, V., Akhtar, K., Stulpinaitė, U., & Iqbal, R. (2021). Biochar role in the sustainability of agriculture and environment. Sustainability, 13, 1330. DOI

Babla, M., Katwal, U., Yong, M. T., Jahandari, S., Rahme, M., Chen, Z. H., & Tao, Z. (2022). Value-added products as soil conditioners for sustainable agriculture. Resources, Conservation & Recycling, 178(3), 106079–106089. DOI

Bakar, R. A., Razak, Z. A., Ahmad, S. H., Seh-Bardan, B. J., Tsong, L. C., & Meng, C. P. (2015). Influence of oil palm empty fruit bunch biochar on floodwater pH and yield components of rice cultivated on acid sulphate soil under rice Intensification practices. Plant Production Science, 18(4), 491–500. DOI

Chen, X., Yang, S., Ding, J., Jiang, Z., & Sun, X. (2021). Effects of biochar addition on rice growth and yield under water-saving irrigation. Water, 13, 209. DOI

Claoston, N., Samsuri, A. W., Ahmad Husni, M. H., & Mohd Amran, M. S. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management & Research, 32(4), 331–339. DOI

Cruells, M., & Roca, A. (2022). Jarosites: Formation, structure, reactivity, and environmental. Metals, 12, 802. DOI

Dang, T., Marschner, P., Fitzpatrick, R., & Mosley, L. M. (2018). Assessment of the binding of protons, Al and Fe to biochar at different pH values and soluble metal concentrations. Water, 10, 55. DOI

Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36(36), 18. DOI

Duncan, D. B. (1955). Multiple range and multiple F tests. International Biometric Society, 11(1), 1–42. DOI

Edeh, I. G., & Mašek, O. (2022). The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. European Journal of Soil Science, 73, e13138. DOI

Fahmi, A., Susilawati, A., & Rachman, A. (2014). Influence of height waterlogging on soil physical properties of potential and actual acid sulphate soils. Journal of Tropical Soils, 19(2), 77–83. DOI

Gabhane, J. W., Bhange, V. P., Patil, P. D., Bankar, S. T., & Kumar, S. (2020). Recent trends in biochar production methods and its application as a soil health conditioner: A review. SN Applied Sciences, 2, 1307. DOI

Ghorbani, M., & Amirahmadi, E. (2018). Effect of rice husk biochar (RHB) on some of chemical properties of an acidic soil and the absorption of some nutrients. Journal of Applied Sciences and Environmental Management, 22(3), 313–317. DOI

Golez, N. V, & Kyuma, K. (1997). Influence of pyrite oxidation and soil acidification on some essential nutrient elements. Aquacultural Engineering, 16(1-2), 107–124. DOI

Grilli, E., Carvalho, S. C. P., Chiti, T., Coppola, E., D’Ascoli, R., La Mantia, T., Marzaioli, R., Mastrocicco, M., Pulido, F., Rutigliano, F. A., Quatrini, P., & Castaldi, S. (2021). Critical range of soil organic carbon in southern Europe lands under desertification risk. Journal of Environmental Management, 287, 112285. DOI

Gross, A., Bromm, T., & Glaser, B. (2021). Soil organic carbon sequestration after biochar application: A global meta-analysis. Agronomy, 11, 2474. DOI

Hariz, A. R. M., Azlina, W. A. K. G. W., Fazly, M. M., & Norziana, Z. Z. (2015). Local practices for production of rice husk biochar and coconut shell biochar: Production methods, product characteristics, nutrient, and field water holding capacity. Journal of Tropical Agriculture and Food Science, 43(1), 91–101.

Hatta, M., Sulakhudin, Burhansyah, R., Kifli, G. C., Dewi, D. O., Kilmanun, J. C., Permana, D., Supriadi, K., Warman, R., Azis, H., Santari, P. T., & Widiastuti, D. P. (2023). Food self-sufficiency: Managing the newly-opened tidal paddy fields for rice farming in Indonesia (A case study in West Kalimantan, Indonesia). Heliyon, 9, e13839. DOI

Hong, M., Zhang, L., Tan, Z., & Huang, Q. (2019). Effect mechanism of biochar’s zeta potential on farmland soil’s cadmium immobilization. Environmental Science and Pollution Research, 26, 19738–19748. DOI

Huang, M., Fan, L., Jiang, L. G., Yang, S. Y., Zou, Y. Bin, & Uphoff, N. (2019). Continuous applications of biochar to rice: Effects on grain yield and yield attributes. Journal of Integrative Agriculture, 18(3), 563–570. DOI

Ibrahim, Z., Ahmad, M., Aziz, A. A., Ramli, R., Hassan, K., & Alias, A. H. (2019). Properties of chemically treated oil palm empty fruit bunch (EFB) fibres. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 57(1), 57–68. website

Jemal, K., & Yakob, A. (2021). Role of bio char on the amelioration of soil acidity. Agrotechnology, 10, 212.

Jin, L., Wei, D., Yin, D., Zhou, B., Ding, J. L., Wang, W., Zhang, J., Qiu, S., Zhang, C., Li, Y., An, Z., Gu, J., & Wang, L. (2020). Investigations of the effect of the amount of biochar on soil porosity and aggregation and crop yields on fertilized black soil in northern China. PLoS ONE, 15(11), e0238883. DOI

Juhrian, J., Yusran, F. H., Wahdah, R., & Priatmadi, B. J. (2020). The effect of biochar, lime, and compost on the properties of acid sulfate soil. Journal of Wetlands Environmental Management, 8(2), 157. DOI

Kalbuadi, D. N., Santi, L. P., Goenadi, D. H., & Barus, Y. (2020). Application of bio-silicic acid to improve yield and fertilizer efficiency of paddy on tidal swamp land. Menara Perkebunan, 88(2), 111–119. DOI

Kan, Z. R., Liu, W. X., Liu, W. S., Lal, R., Dang, Y. P., Zhao, X., & Zhang, H. L. (2022). Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective. Global Change Biology, 28(3), 693–710. DOI

Kinnunen, N., Laurén, A. A., Pumpanen, J., Nieminen, T. M., & Palviainen, M. (2021). Biochar capacity to mitigate acidity and adsorb metals—laboratory tests for acid sulfate soil drainage water. Water, Air, and Soil Pollution, 232, 464. DOI

Kiran, A., Wakeel, A., Mahmood, K., Mubaraka, R., Hafsa, & Haefele, S. M. (2022). Biofortification of staple crops to alleviate human malnutrition: Contributions and potential in developing countries. Agronomy, 12, 452. DOI

Li, J., Li, L., Suvarna, M., Pan, L., Tabatabaei, M., Ok, Y. S., & Wang, X. (2022). Wet wastes to bioenergy and biochar: A critical review with future perspectives. Science of the Total Environment, 817, 152921. DOI

Lukmana, M., Alexander, B., & Iswahyudi, H. (2022). Design of a portable pyrolysis equipment for making liquid smoke from palm oil midrib-leaf waste. EnviroScienteae,18(1), 13-18. DOI

Mansyur, N. I., Hanudin, E., Purwanto, B. H., & Utami, S. N. H. (2022). Chemical properties and micromorphology of biochars resulted from pyrolysis of agricultural waste at different temperature. AGRIVITA Journal of Agricultural Science, 44(3), 431–446. DOI

Margono, B. A., Bwangoy, J. R. B., Potapov, P. V., & Hansen, M. C. (2014). Mapping wetlands in Indonesia using landsat and PALSAR data-sets and derived topographical indices. Geo-Spatial Information Science, 17(1), 60–71. DOI

Michael, P. S., Fitzpatrick, R., & Reid, R. (2015). The role of organic matter in ameliorating acid sulfate soils with sulfuric horizons. Geoderma, 255–256(10), 42–49. DOI

Mulyani, A., Mulyanto, B., Barus, B., Panuju, D. R., & Husnain. (2023). Potential land reserves for agriculture in Indonesia: Suitability and legal aspect supporting food sufficiency. Land, 12, 970. DOI

Noor, M. S., Andrestian, M. D., Dina, R. A., Ferdina, A. R., Dewi, Z., Hariati, N. W., Rachman, P. H., Setiawan, M. I., Yuana, W. T., & Khomsan, A. (2022). Analysis of socioeconomic, utilization of maternal health services, and toddler’s characteristics as stunting risk factors. Nutrients, 14, 4373. DOI

Oni, B. A., Oziegbe, O., & Olawole, O. O. (2019). Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64, 222–236. DOI

Paiman. (2015). Rancangan Penelitian untuk Pertanian (M. Kusberyunadi, Ardiyanta, & Nugraha (eds.); 1st ed.). Universitas PGRI Yogyakarta Press. website

Paz-Ferreiro, J., Álvarez-Calvo, M. L., De-Figueiredo, C. C., Mendez, A.-M., & Gascó, G. (2020). Effect of biochar and hydrochar on forms of aluminium in an acidic soil. Applied Sciences, 10, 7843. DOI

Pennock, D., Yates, T., & Braidek, J. (2008). Soil Sampling and Handling. In M. R. Carter & E. G. Gregorich (Eds.), Soil Sampling and Methods of Analysis: Second Edition (second, pp. 31–35). CRC Press Taylor & Francis Group.

Pester, M., Knorr, K. H., Friedrich, M. W., Wagner, M., & Loy, A. (2012). Sulfate-reducing microorganisms in wetlands - fameless actors in carbon cycling and climate change. Frontiers in Microbiology, 3, 72. DOI

Phuong, N. T. K., Khoi, C. M., Ritz, K., Sinh, N. V., Tarao, M., & Toyota, K. (2020). Potential use of rice husk biochar and compost to improve P availability and reduce GHG emissions in acid sulfate soil. Agronomy, 10, 685. DOI

Qu, T., Guo, W., Shen, L., Xiao, J., & Zhao, K. (2011). Experimental study of biomass pyrolysis based on three major components: Hemicellulose, cellulose, and lignin. Industrial and Engineering Chemistry Research, 50(18), 10424–10433. DOI

Samsuri, A. W., Sadegh-Zadeh, F., & Seh-Bardan, B. J. (2014). Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals. International Journal of Environmental Science and Technology, 11, 967–976. DOI

Sánchez, A., Artola, A., Font, X., Gea, T., Barrena, R., Gabriel, D., Sánchez-Monedero, M. Á., Roig, A., Cayuela, M. L., & Mondini, C. (2015). Greenhouse gas emissions from organic waste composting. Environmental Chemistry Letters, 13, 223–238. DOI

Sarangi, S. K., Mainuddin, M., & Maji, B. (2022). Problems, management, and prospects of acid sulphate soils in the Ganges Delta. Soil Systems, 6, 95. DOI

Sari, N. A., Ishak, C. F., & Bakar, R. A. (2014). Characterization of oil palm empty fruit bunch and rice husk biochars and their potential to adsorb arsenic and cadmium. American Journal of Agricultural and Biological Science, 9(3), 450–456. DOI

Septiana, L. M., Djajakirana, G., & Darmawan. (2018). Characteristics of biochars from plant biomass wastes at low-temperature pyrolysis. SAINS TANAH - Journal of Soil Science and Agroclimatology, 15(1), 15–28. DOI

Shi, R., Li, J., Ni, N., & Xu, R. (2019). Understanding the biochar’s role in ameliorating soil acidity. Journal of Integrative Agriculture, 18(7), 1508–1517. DOI

Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar, 4, 8. DOI

Sitaresmi, T., Hairmansis, A., Widyastuti, Y., Rachmawati, Susanto, U., Wibowo, B. P., Widiastuti, M. L., Rumanti, I. A., Suwarno, W. B., & Nugraha, Y. (2023). Advances in the development of rice varieties with better nutritional quality in Indonesia. Journal of Agriculture and Food Research, 12, 100602. DOI

Sukitprapanon, T., Suddhiprakarn, A., Kheoruenromne, I., Anusontpornperm, S., & Gilkes, R. J. (2020). Nature of redox concentrations in a sequence of agriculturally developed acid sulfate soils in Thailand. Pedosphere, 30(3), 390–404. DOI

Sulaiman, A. A., Sulaeman, Y., & Minasny, B. (2019). A framework for the development of wetland for agricultural use in Indonesia. Resources, 8, 34. DOI

Supriyadi, Pratiwi, M. K., Minardi, S., & Prastiyaningsih, N. L. (2020). Carbon organic content under organic and conventional paddy field and its effect on biological activities (A case study in Pati Regency, Indonesia). Caraka Tani: Journal of Sustainable Agriculture, 35(1), 108-116. DOI

Suryajaya, Haryanti, N. H., Husain, S., & Safitri, M. (2020). Preliminary study of activated carbon from water chestnut (Eleocharis dulcis). Journal of Physics: Conference Series, 1572(1), 012053. DOI

Susilawati, A., Maftu’ah, E., & Fahmi, A. (2020). The utilization of agricultural waste as biochar for optimizing swampland: A review. IOP Conference Series: Materials Science and Engineering, 980(1), 012065. DOI

Wu, X., Zhou, Y., Liang, M., Lu, X., Chen, G., & Zan, F. (2022). Insights into the role of biochar on the acidogenic process and microbial pathways in a granular sulfate-reducing up-flow sludge bed reactor. Bioresource Technology, 355, 127254. DOI

Yavari, S., Malakahmad, A., & Sapari, N. B. (2016). Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches. Environmental Science and Pollution Research, 23, 17928–17940. DOI

Yu, S., Wang, L., Li, Q., Zhang, Y., & Zhou, H. (2022). Sustainable carbon materials from the pyrolysis of lignocellulosic biomass. Materials Today Sustainability, 19, 100209. DOI

Yusran, F. H., Mariana, Z. T., & Juhrian. (2023). The Phosphorus Availability Due to Various Ameliorants in a New Rice Field of Barito Kuala Regency South Kalimantan. International Journal of Plant & Soil Science, 35(7), 101-110. DOI




DOI: http://doi.org/10.17503/agrivita.v46i3.4258

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.