Changes in Acid-Sulfate Soil Characteristics with Biochar from Various Materials and their Effect on IR-Zinc Production
Abstract
The extensification of paddy fields is the government's program for food security and nutrition, but it influences the destruction of acid-sulfate soils. This study aimed to assess the improvement result of acid-sulfate soil character applied biochar from local materials with the various doses and to determine the production of IR-Zinc after the treatments, as recommendations for farmers cultivation of IR-Zinc on acid-sulfate soil. The research was conducted in Karang Indah Village, Barito Kuala District, South Kalimantan, from November 2021 to July 2022. The design used was a randomized, complete experiment with two factors: the raw material and the application dose. Research objects consisted of bulk density, porosity, pyrite (FeS2), soil organic-C, number of productive tillers, and weight of dry-milled grain for each treatment. A test using Duncan’s Multiple Range Test (DMRT) at 5% was used to determine the source and dose of biochar that affected significant object changes. The results showed an interaction between raw material and dose levels of biochar. Rice husk biochar increased the yield of IR-Zinc with an application dose of 1.8 kg and improved the characteristics of acid-sulfate soil. Rice husk biochar can provide nutrients due to soil physico-chemical improvements in reducing bulk density and acidity.
Keywords
Full Text:
PDFReferences
Abdillah, M. H., & Widiyastuti, D. A. (2022). Peningkatan kualitas kimia tanah sulfat masam dengan aplikasi kombinasi bahan organik lokal dan limbah agroindustri (Improvement of chemical quality acid sulphate soil with application local organic matter combined agroindustrial wasted). Jurnal Ilmu Pertanian Indonesia, 27(1), 120–131. https://doi.org/10.18343/jipi.27.1.120
Abdulrazzaq, H., Jol, H., Husni, A., & Abu-Bakr, R. (2015). Biochar from empty fruit bunches, wood, and rice husks: Effects on soil physical properties and growth of sweet corn on acidic soil. Journal of Agricultural Science, 7(1), 192–200. https://doi.org/10.5539/jas.v7n1p192
Adhikari, S., Timms, W., & Mahmud, M. A. P. (2022). Optimising water holding capacity and hydrophobicity of biochar for soil amendment – A review. Science of The Total Environment, 851(1), 158043. https://doi.org/10.1016/j.scitotenv.2022.158043
Alghamdi, A. G., Alkhasha, A., & Ibrahim, H. M. (2020). Effect of biochar particle size on water retention and availability in a sandy loam soil. Journal of Saudi Chemical Society, 24(12), 1042–1050. https://doi.org/10.1016/j.jscs.2020.11.003
Amrullah, A., Farobie, O., & Widyanto, R. (2021). Pyrolysis of purun tikus (Eleocharis dulcis): Product distributions and reaction kinetics. Bioresource Technology Reports, 13(100642), 1–8. https://doi.org/10.1016/j.biteb.2021.100642
Annisa, W., Mukhlis, M., & Hairani, A. (2021). Biochar-materials for remediation on swamplands: Mechanisms and effectiveness. Jurnal Sumberdaya Lahan, 15(1), 13–22. https://doi.org/10.21082/jsdl.v15n1.2021.13-22
Ayaz, M., Feizienė, D., Tilvikienė, V., Akhtar, K., Stulpinaitė, U., & Iqbal, R. (2021). Biochar role in the sustainability of agriculture and environment. Sustainability, 13, 1330. https://doi.org/10.3390/su13031330
Babla, M., Katwal, U., Yong, M. T., Jahandari, S., Rahme, M., Chen, Z. H., & Tao, Z. (2022). Value-added products as soil conditioners for sustainable agriculture. Resources, Conservation & Recycling, 178(3), 106079–106089. https://doi.org/10.1016/J.RESCONREC.2021.106079
Bakar, R. A., Razak, Z. A., Ahmad, S. H., Seh-Bardan, B. J., Tsong, L. C., & Meng, C. P. (2015). Influence of oil palm empty fruit bunch biochar on floodwater pH and yield components of rice cultivated on acid sulphate soil under rice Intensification practices. Plant Production Science, 18(4), 491–500. https://doi.org/10.1626/pps.18.491
Chen, X., Yang, S., Ding, J., Jiang, Z., & Sun, X. (2021). Effects of biochar addition on rice growth and yield under water-saving irrigation. Water, 13, 209. https://doi.org/10.3390/w13020209
Claoston, N., Samsuri, A. W., Ahmad Husni, M. H., & Mohd Amran, M. S. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management & Research, 32(4), 331–339. https://doi.org/10.1177/0734242X14525822
Cruells, M., & Roca, A. (2022). Jarosites: Formation, structure, reactivity, and environmental. Metals, 12, 802. https://doi.org/10.3390/met12050802
Dang, T., Marschner, P., Fitzpatrick, R., & Mosley, L. M. (2018). Assessment of the binding of protons, Al and Fe to biochar at different pH values and soluble metal concentrations. Water, 10, 55. https://doi.org/10.3390/w10010055
Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36(36), 18. https://doi.org/10.1007/s13593-016-0372-z
Duncan, D. B. (1955). Multiple range and multiple F tests. International Biometric Society, 11(1), 1–42. https://doi.org/10.2307/3001478
Edeh, I. G., & Mašek, O. (2022). The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. European Journal of Soil Science, 73, e13138. https://doi.org/10.1111/ejss.13138
Fahmi, A., Susilawati, A., & Rachman, A. (2014). Influence of height waterlogging on soil physical properties of potential and actual acid sulphate soils. Journal of Tropical Soils, 19(2), 77–83. https://doi.org/10.5400/jts.2014.v19i2.67-73
Gabhane, J. W., Bhange, V. P., Patil, P. D., Bankar, S. T., & Kumar, S. (2020). Recent trends in biochar production methods and its application as a soil health conditioner: A review. SN Applied Sciences, 2, 1307. https://doi.org/10.1007/s42452-020-3121-5
Ghorbani, M., & Amirahmadi, E. (2018). Effect of rice husk biochar (RHB) on some of chemical properties of an acidic soil and the absorption of some nutrients. Journal of Applied Sciences and Environmental Management, 22(3), 313–317. https://doi.org/10.4314/jasem.v22i3.4
Golez, N. V, & Kyuma, K. (1997). Influence of pyrite oxidation and soil acidification on some essential nutrient elements. Aquacultural Engineering, 16(1-2), 107–124. https://doi.org/10.1016/s0144-8609(96)01008-4
Grilli, E., Carvalho, S. C. P., Chiti, T., Coppola, E., D’Ascoli, R., La Mantia, T., Marzaioli, R., Mastrocicco, M., Pulido, F., Rutigliano, F. A., Quatrini, P., & Castaldi, S. (2021). Critical range of soil organic carbon in southern Europe lands under desertification risk. Journal of Environmental Management, 287, 112285. https://doi.org/10.1016/j.jenvman.2021.112285
Gross, A., Bromm, T., & Glaser, B. (2021). Soil organic carbon sequestration after biochar application: A global meta-analysis. Agronomy, 11, 2474. https://doi.org/10.3390/agronomy11122474
Hariz, A. R. M., Azlina, W. A. K. G. W., Fazly, M. M., & Norziana, Z. Z. (2015). Local practices for production of rice husk biochar and coconut shell biochar: Production methods, product characteristics, nutrient, and field water holding capacity. Journal of Tropical Agriculture and Food Science, 43(1), 91–101.
Hatta, M., Sulakhudin, Burhansyah, R., Kifli, G. C., Dewi, D. O., Kilmanun, J. C., Permana, D., Supriadi, K., Warman, R., Azis, H., Santari, P. T., & Widiastuti, D. P. (2023). Food self-sufficiency: Managing the newly-opened tidal paddy fields for rice farming in Indonesia (A case study in West Kalimantan, Indonesia). Heliyon, 9, e13839. https://doi.org/10.1016/j.heliyon.2023.e13839
Hong, M., Zhang, L., Tan, Z., & Huang, Q. (2019). Effect mechanism of biochar’s zeta potential on farmland soil’s cadmium immobilization. Environmental Science and Pollution Research, 26, 19738–19748. https://doi.org/10.1007/s11356-019-05298-5
Huang, M., Fan, L., Jiang, L. G., Yang, S. Y., Zou, Y. Bin, & Uphoff, N. (2019). Continuous applications of biochar to rice: Effects on grain yield and yield attributes. Journal of Integrative Agriculture, 18(3), 563–570. https://doi.org/10.1016/S2095-3119(18)61993-8
Ibrahim, Z., Ahmad, M., Aziz, A. A., Ramli, R., Hassan, K., & Alias, A. H. (2019). Properties of chemically treated oil palm empty fruit bunch (EFB) fibres. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 57(1), 57–68. https://semarakilmu.com.my/journals/index.php/fluid_mechanics_thermal_sciences/article/view/3118
Jemal, K., & Yakob, A. (2021). Role of bio char on the amelioration of soil acidity. Agrotechnology, 10, 212.
Jin, L., Wei, D., Yin, D., Zhou, B., Ding, J. L., Wang, W., Zhang, J., Qiu, S., Zhang, C., Li, Y., An, Z., Gu, J., & Wang, L. (2020). Investigations of the effect of the amount of biochar on soil porosity and aggregation and crop yields on fertilized black soil in northern China. PLoS ONE, 15(11), e0238883. https://doi.org/10.1371/journal.pone.0238883
Juhrian, J., Yusran, F. H., Wahdah, R., & Priatmadi, B. J. (2020). The effect of biochar, lime, and compost on the properties of acid sulfate soil. Journal of Wetlands Environmental Management, 8(2), 157. https://doi.org/10.20527/jwem.v8i2.249
Kalbuadi, D. N., Santi, L. P., Goenadi, D. H., & Barus, Y. (2020). Application of bio-silicic acid to improve yield and fertilizer efficiency of paddy on tidal swamp land. Menara Perkebunan, 88(2), 111–119. https://doi.org/10.22302/iribb.jur.mp.v88i2.378
Kan, Z. R., Liu, W. X., Liu, W. S., Lal, R., Dang, Y. P., Zhao, X., & Zhang, H. L. (2022). Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective. Global Change Biology, 28(3), 693–710. https://doi.org/10.1111/gcb.15968
Kinnunen, N., Laurén, A. A., Pumpanen, J., Nieminen, T. M., & Palviainen, M. (2021). Biochar capacity to mitigate acidity and adsorb metals—laboratory tests for acid sulfate soil drainage water. Water, Air, and Soil Pollution, 232, 464. https://doi.org/10.1007/s11270-021-05407-6
Kiran, A., Wakeel, A., Mahmood, K., Mubaraka, R., Hafsa, & Haefele, S. M. (2022). Biofortification of staple crops to alleviate human malnutrition: Contributions and potential in developing countries. Agronomy, 12, 452. https://doi.org/10.3390/agronomy12020452
Li, J., Li, L., Suvarna, M., Pan, L., Tabatabaei, M., Ok, Y. S., & Wang, X. (2022). Wet wastes to bioenergy and biochar: A critical review with future perspectives. Science of the Total Environment, 817, 152921. https://doi.org/10.1016/J.SCITOTENV.2022.152921
Lukmana, M., Alexander, B., & Iswahyudi, H. (2022). Design of a portable pyrolysis equipment for making liquid smoke from palm oil midrib-leaf waste. EnviroScienteae,18(1), 13-18. http://dx.doi.org/10.20527/es.v18i1.12974
Mansyur, N. I., Hanudin, E., Purwanto, B. H., & Utami, S. N. H. (2022). Chemical properties and micromorphology of biochars resulted from pyrolysis of agricultural waste at different temperature. AGRIVITA Journal of Agricultural Science, 44(3), 431–446. https://doi.org/10.17503/agrivita.v41i0.3085
Margono, B. A., Bwangoy, J. R. B., Potapov, P. V., & Hansen, M. C. (2014). Mapping wetlands in Indonesia using landsat and PALSAR data-sets and derived topographical indices. Geo-Spatial Information Science, 17(1), 60–71. https://doi.org/10.1080/10095020.2014.898560
Michael, P. S., Fitzpatrick, R., & Reid, R. (2015). The role of organic matter in ameliorating acid sulfate soils with sulfuric horizons. Geoderma, 255–256(10), 42–49. https://doi.org/10.1016/j.geoderma.2015.04.023
Mulyani, A., Mulyanto, B., Barus, B., Panuju, D. R., & Husnain. (2023). Potential land reserves for agriculture in Indonesia: Suitability and legal aspect supporting food sufficiency. Land, 12, 970. https://doi.org/10.3390/land12050970
Noor, M. S., Andrestian, M. D., Dina, R. A., Ferdina, A. R., Dewi, Z., Hariati, N. W., Rachman, P. H., Setiawan, M. I., Yuana, W. T., & Khomsan, A. (2022). Analysis of socioeconomic, utilization of maternal health services, and toddler’s characteristics as stunting risk factors. Nutrients, 14, 4373. https://doi.org/10.3390/nu14204373
Oni, B. A., Oziegbe, O., & Olawole, O. O. (2019). Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64, 222–236. https://doi.org/10.1016/j.aoas.2019.12.006
Paiman. (2015). Rancangan Penelitian untuk Pertanian (M. Kusberyunadi, Ardiyanta, & Nugraha (eds.); 1st ed.). Universitas PGRI Yogyakarta Press. http://repository.upy.ac.id/id/eprint/2492
Paz-Ferreiro, J., Álvarez-Calvo, M. L., De-Figueiredo, C. C., Mendez, A.-M., & Gascó, G. (2020). Effect of biochar and hydrochar on forms of aluminium in an acidic soil. Applied Sciences, 10, 7843. https://doi.org/10.3390/app10217843
Pennock, D., Yates, T., & Braidek, J. (2008). Soil Sampling and Handling. In M. R. Carter & E. G. Gregorich (Eds.), Soil Sampling and Methods of Analysis: Second Edition (second, pp. 31–35). CRC Press Taylor & Francis Group.
Pester, M., Knorr, K. H., Friedrich, M. W., Wagner, M., & Loy, A. (2012). Sulfate-reducing microorganisms in wetlands - fameless actors in carbon cycling and climate change. Frontiers in Microbiology, 3, 72. https://doi.org/10.3389/fmicb.2012.00072
Phuong, N. T. K., Khoi, C. M., Ritz, K., Sinh, N. V., Tarao, M., & Toyota, K. (2020). Potential use of rice husk biochar and compost to improve P availability and reduce GHG emissions in acid sulfate soil. Agronomy, 10, 685. https://doi.org/10.3390/agronomy10050685
Qu, T., Guo, W., Shen, L., Xiao, J., & Zhao, K. (2011). Experimental study of biomass pyrolysis based on three major components: Hemicellulose, cellulose, and lignin. Industrial and Engineering Chemistry Research, 50(18), 10424–10433. https://doi.org/10.1021/ie1025453
Samsuri, A. W., Sadegh-Zadeh, F., & Seh-Bardan, B. J. (2014). Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals. International Journal of Environmental Science and Technology, 11, 967–976. https://doi.org/10.1007/s13762-013-0291-3
Sánchez, A., Artola, A., Font, X., Gea, T., Barrena, R., Gabriel, D., Sánchez-Monedero, M. Á., Roig, A., Cayuela, M. L., & Mondini, C. (2015). Greenhouse gas emissions from organic waste composting. Environmental Chemistry Letters, 13, 223–238. https://doi.org/10.1007/s10311-015-0507-5
Sarangi, S. K., Mainuddin, M., & Maji, B. (2022). Problems, management, and prospects of acid sulphate soils in the Ganges Delta. Soil Systems, 6, 95. https://doi.org/10.3390/soilsystems6040095
Sari, N. A., Ishak, C. F., & Bakar, R. A. (2014). Characterization of oil palm empty fruit bunch and rice husk biochars and their potential to adsorb arsenic and cadmium. American Journal of Agricultural and Biological Science, 9(3), 450–456. https://doi.org/10.3844/ajabssp.2014.450.456
Septiana, L. M., Djajakirana, G., & Darmawan. (2018). Characteristics of biochars from plant biomass wastes at low-temperature pyrolysis. SAINS TANAH - Journal of Soil Science and Agroclimatology, 15(1), 15–28. https://doi.org/10.15608/stjssa.v15i1.21618
Shi, R., Li, J., Ni, N., & Xu, R. (2019). Understanding the biochar’s role in ameliorating soil acidity. Journal of Integrative Agriculture, 18(7), 1508–1517. https://doi.org/10.1016/S2095-3119(18)62148-3
Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar, 4, 8. https://doi.org/10.1007/s42773-022-00138-1
Sitaresmi, T., Hairmansis, A., Widyastuti, Y., Rachmawati, Susanto, U., Wibowo, B. P., Widiastuti, M. L., Rumanti, I. A., Suwarno, W. B., & Nugraha, Y. (2023). Advances in the development of rice varieties with better nutritional quality in Indonesia. Journal of Agriculture and Food Research, 12, 100602. https://doi.org/10.1016/j.jafr.2023.100602
Sukitprapanon, T., Suddhiprakarn, A., Kheoruenromne, I., Anusontpornperm, S., & Gilkes, R. J. (2020). Nature of redox concentrations in a sequence of agriculturally developed acid sulfate soils in Thailand. Pedosphere, 30(3), 390–404. https://doi.org/10.1016/S1002-0160(17)60449-1
Sulaiman, A. A., Sulaeman, Y., & Minasny, B. (2019). A framework for the development of wetland for agricultural use in Indonesia. Resources, 8, 34. https://doi.org/10.3390/resources8010034
Supriyadi, Pratiwi, M. K., Minardi, S., & Prastiyaningsih, N. L. (2020). Carbon organic content under organic and conventional paddy field and its effect on biological activities (A case study in Pati Regency, Indonesia). Caraka Tani: Journal of Sustainable Agriculture, 35(1), 108-116. https://doi.org/10.20961/carakatani.v35i1.34630
Suryajaya, Haryanti, N. H., Husain, S., & Safitri, M. (2020). Preliminary study of activated carbon from water chestnut (Eleocharis dulcis). Journal of Physics: Conference Series, 1572(1), 012053. https://doi.org/10.1088/1742-6596/1572/1/012053
Susilawati, A., Maftu’ah, E., & Fahmi, A. (2020). The utilization of agricultural waste as biochar for optimizing swampland: A review. IOP Conference Series: Materials Science and Engineering, 980(1), 012065. https://doi.org/10.1088/1757-899X/980/1/012065
Wu, X., Zhou, Y., Liang, M., Lu, X., Chen, G., & Zan, F. (2022). Insights into the role of biochar on the acidogenic process and microbial pathways in a granular sulfate-reducing up-flow sludge bed reactor. Bioresource Technology, 355, 127254. https://doi.org/10.1016/J.BIORTECH.2022.127254
Yavari, S., Malakahmad, A., & Sapari, N. B. (2016). Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches. Environmental Science and Pollution Research, 23, 17928–17940. https://doi.org/10.1007/s11356-016-6943-3
Yu, S., Wang, L., Li, Q., Zhang, Y., & Zhou, H. (2022). Sustainable carbon materials from the pyrolysis of lignocellulosic biomass. Materials Today Sustainability, 19, 100209. https://doi.org/10.1016/j.mtsust.2022.100209
Yusran, F. H., Mariana, Z. T., & Juhrian. (2023). The Phosphorus Availability Due to Various Ameliorants in a New Rice Field of Barito Kuala Regency South Kalimantan. International Journal of Plant & Soil Science, 35(7), 101-110. https://doi.org/10.9734/ijpss/2023/v35i72869
DOI: http://doi.org/10.17503/agrivita.v46i3.4258
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.