Utilization of Yeasts in Promoting Plant Growth in Acidic Soil – A Review
Abstract
Keywords
Full Text:
PDFReferences
Adomako, M. O., Roiloa, S., & Yu, F.-H. (2022). Potential roles of soil microorganisms in regulating the effect of soil nutrient heterogeneity on plant performance. Microorganisms, 10(12), 2399. DOI
Agegnehu, G., Amede, T., Erkossa, T., Yirga, C., Henry, C., Tyler, R., Nosworthy, M. G., Beyene, S., & Sileshi, G. W. (2021). Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: A review. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71(9), 852–869. DOI
Ahuja, I., Kissen, R., & Bones, A. M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17(2), 73–90. DOI
Aitzhanova, A., Oleinikova, Y., Mounier, J., Hymery, N., Leyva Salas, M., Amangeldi, A., Saubenova, M., Alimzhanova, M., Ashimuly, K., & Sadanov, A. (2021). Dairy associations for the targeted control of opportunistic Candida. World Journal of Microbiology and Biotechnology, 37(8), 143. DOI
Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., Almutairi, K. F., & Al-Saif, A. M. (2021). Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5), 993. DOI
Barth, V. P., Reardon, C. L., Coffey, T., Klein, A. M., McFarland, C., Huggins, D. R., & Sullivan, T. S. (2018). Stratification of soil chemical and microbial properties under no-till after liming. Applied Soil Ecology, 130, 169–177. DOI
Bedigian, D. (2005). Sustainable soils. The place of organic matter in sustaining soils and their productivity. Economic Botany, 59(4), 410–410. DOI
Botha, A. (2011). The importance and ecology of yeasts in soil. Soil Biology and Biochemistry, 43(1), 1–8. DOI
Bruner, J., & Fox, G. (2020). Novel non-cerevisiae saccharomyces yeast species used in beer and alcoholic beverage fermentations. Fermentation, 6(4), 116. DOI
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., De Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., Van Groenigen, J. W., & Brussaard, L. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105–125. DOI
Butinar, L., Santos, S., Spencer-Martins, I., Oren, A., & Gunde-Cimerman, N. (2005). Yeast diversity in hypersaline habitats. FEMS Microbiology Letters, 244(2), 229–234. DOI
Cai, Z., Wang, B., Xu, M., Zhang, H., He, X., Zhang, L., & Gao, S. (2015). Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. Journal of Soils and Sediments, 15(2), 260–270. DOI
Carmona-Hernandez, S., Reyes-Pérez, J., Chiquito-Contreras, R., Rincon-Enriquez, G., Cerdan-Cabrera, C., & Hernandez-Montiel, L. (2019). Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy, 9(3), 121. DOI
Castellini, M., Diacono, M., Gattullo, C. E., & Stellacci, A. M. (2021). Sustainable agriculture and soil conservation. Applied Sciences, 11(9), 4146. DOI
Chintala, R., McDonald, L. M., & Bryan, W. B. (2012). Effect of soil water and nutrients on productivity of kentucky bluegrass system in acidic soils. Journal of Plant Nutrition, 35(2), 288–303. DOI
Christel, A., Maron, P.-A., & Ranjard, L. (2021). Impact of farming systems on soil ecological quality: A meta-analysis. Environmental Chemistry Letters, 19(6), 4603–4625. DOI
Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: A choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11(8), 664–691. DOI
Dawson, C. J., & Hilton, J. (2011). Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy, 36, S14–S22. DOI
Di Canito, A., Mateo-Vargas, M. A., Mazzieri, M., Cantoral, J., Foschino, R., Cordero-Bueso, G., & Vigentini, I. (2021). The role of yeasts as biocontrol agents for pathogenic fungi on postharvest grapes: A review. Foods, 10(7), 1650. DOI
Elghandour, M. M. Y., Tan, Z. L., Abu Hafsa, S. H., Adegbeye, M. J., Greiner, R., Ugbogu, E. A., Cedillo Monroy, J., & Salem, A. Z. M. (2020). Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo‐ruminant feeding: A review. Journal of Applied Microbiology, 128(3), 658–674. DOI
Elita, N., Illahi, A. K., Sari, D. A., Yulensri, Y., Maulina, F., Karmaita, Y., Kurniasih, D., Yulita, R., & Yanti, R. (2022). Effect of types of organic materials and microbial enrichment on C/N ratio, nutrition of compost, and microbe population with Trichoderma sp. indigenous activators. Res Militaris, 12(6), 205–217. website
Erten, H., Ağirman, B., Gündüz, C. P. B., Çarşanba, E., Sert, S., Bircan, S., & Tangüler, H. (2014). Importance of yeasts and lactic acid bacteria in food processing. In A. Malik, Z. Erginkaya, S. Ahmad, & H. Erten (Eds.), Food Processing: Strategies for Quality Assessment (pp. 351–378). Springer New York. DOI
Fageria, N. K., Baligar, V. C., & Li, Y. C. (2008). The role of nutrient efficient plants in improving crop yields in the twenty first century. Journal of Plant Nutrition, 31(6), 1121–1157. DOI
Faniyi, T. O., Adegbeye, M. J., Elghandour, M. M. M. Y., Pilego, A. B., Salem, A. Z. M., Olaniyi, T. A., Adediran, O., & Adewumi, M. K. (2019). Role of diverse fermentative factors towards microbial community shift in ruminants. Journal of Applied Microbiology, 127(1), 2–11. DOI
Faria-Oliveira, F., Diniz, R. H. S., Godoy-Santos, F., Piló, F. B., Mezadri, H., Castro, I. M., & Brandão, R. L. (2015). The role of yeast and lactic acid bacteria in the production of fermented beverages in South America. In A. H. A. Eissa (Ed.), Food Production and Industry. InTech. DOI
Fenner, E. D., Scapini, T., Da Costa Diniz, M., Giehl, A., Treichel, H., Álvarez-Pérez, S., & Alves, S. L. (2022). Nature’s most fruitful threesome: The relationship between yeasts, insects, and angiosperms. Journal of Fungi, 8(10), 984. DOI
Ferraz, P., Cássio, F., & Lucas, C. (2019). Potential of yeasts as biocontrol agents of the phytopathogen causing cacao witches’ broom disease: Is microbial warfare a solution? Frontiers in Microbiology, 10, 1766. DOI
Fleet, G. H. (2011). Yeast spoilage of foods and beverages. In The Yeasts (pp. 53–63). Elsevier. DOI
Freimoser, F. M., Rueda-Mejia, M. P., Tilocca, B., & Migheli, Q. (2019). Biocontrol yeasts: Mechanisms and applications. World Journal of Microbiology and Biotechnology, 35(10), 154. DOI
Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., & Sarniguet, A. (2011). Bacterial-fungal interactions: Hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology Reviews, 75(4), 583–609. DOI
Gadanho, M., Almeida, J. M., & Sampaio, J. P. (2003). Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie van Leeuwenhoek, 84(3), 217–227. DOI
Gazey, C., & Andrew, J. (2009). Soil pH in northern and southern areas of the WA wheatbelt. Bulletin 4761. PDF
Geronikou, A., Larsen, N., Lillevang, S. K., & Jespersen, L. (2022). Occurrence and identification of yeasts in production of white-brined cheese. Microorganisms, 10(6), 1079. DOI
Gondal, A. H., Farooq, Q., Hussain, I., & Toor, M. D. (2021). Role of microbes in plant growth and food preservation. Agrinula: Jurnal Agroteknologi Dan Perkebunan, 4(2), 106–121. DOI
Grzyb, A., Wolna-Maruwka, A., & Niewiadomska, A. (2021). The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy, 11(7), 1415. DOI
Gupta, A., Gupta, R., & Singh, R. L. (2017). Microbes and environment. In R. L. Singh (Ed.), Principles and Applications of Environmental Biotechnology for a Sustainable Future (pp. 43–84). Springer Singapore. DOI
Hattori, D., Kenzo, T., Shirahama, T., Harada, Y., Kendawang, J. J., Ninomiya, I., & Sakurai, K. (2019). Degradation of soil nutrients and slow recovery of biomass following shifting cultivation in the heath forests of Sarawak, Malaysia. Forest Ecology and Management, 432, 467–477. DOI
Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60(4), 579–598. DOI
Hernández-Fernández, M., Cordero-Bueso, G., Ruiz-Muñoz, M., & Cantoral, J. M. (2021). Culturable yeasts as biofertilizers and biopesticides for a sustainable agriculture: A comprehensive review. Plants, 10(5), 822. DOI
Howieson, J. G., & Ewing, M. A. (1986). Acid tolerance in the Rhizobium meliloti–Medicago symbiosis. Australian Journal of Agricultural Research, 37(1), 55-64. DOI
Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. Frontiers in Plant Science, 8, 1617. DOI
John, D. A., & Babu, G. R. (2021). Lessons from the aftermaths of green revolution on food system and health. Frontiers in Sustainable Food Systems, 5, 644559. DOI
Johnson, E. A. (2013). Biotechnology of non-Saccharomyces yeasts—The basidiomycetes. Applied Microbiology and Biotechnology, 97(17), 7563–7577. DOI
Jwaideh, M. A. A., Sutanudjaja, E. H., & Dalin, C. (2022). Global impacts of nitrogen and phosphorus fertiliser use for major crops on aquatic biodiversity. The International Journal of Life Cycle Assessment, 27(8), 1058–1080. DOI
Kaur, S., Samota, M. K., Choudhary, M., Choudhary, M., Pandey, A. K., Sharma, A., & Thakur, J. (2022). How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants, 28(2), 485–504. DOI
Kowalska, J., Krzymińska, J., & Tyburski, J. (2022). Yeasts as a potential biological agent in plant disease protection and yield improvement—A short review. Agriculture, 12(9), 1404. DOI
Kuzyakov, Y., & Xu, X. (2013). Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytologist, 198(3), 656–669. DOI
Laekemariam, F., Kibret, K., Mamo, T., Karltun, E., & Gebrekidan, H. (2016). Physiographic characteristics of agricultural lands and farmers’ soil fertility management practices in Wolaita zone, Southern Ethiopia. Environmental Systems Research, 5(1), 24. DOI
Larimer, A. L., Clay, K., & Bever, J. D. (2014). Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 95(4), 1045–1054. DOI
Liu, Y., He, G., He, T., & Saleem, M. (2022). Signaling and detoxification strategies in plant-microbes symbiosis under heavy metal stress: A mechanistic understanding. Microorganisms, 11(1), 69. DOI
Ljunggren, J., Borrero-Echeverry, F., Chakraborty, A., Lindblom, T. U. T., Hedenström, E., Karlsson, M., Witzgall, P., & Bengtsson, M. (2019). Yeast volatomes differentially affect larval feeding in an insect herbivore. Applied and Environmental Microbiology, 85(21), e01761-19. DOI
Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577. DOI
Mack, M., Wannemacher, M., Hobl, B., Pietschmann, P., & Hock, B. (2009). Comparison of two expression platforms in respect to protein yield and quality: Pichia pastoris versus Pichia angusta. Protein Expression and Purification, 66(2), 165–171. DOI
Maicas, S. (2020). The role of yeasts in fermentation processes. Microorganisms, 8(8), 1142. DOI
Malassigné, S., Minard, G., Vallon, L., Martin, E., Valiente Moro, C., & Luis, P. (2021). Diversity and functions of yeast communities associated with insects. Microorganisms, 9(8), 1552. DOI
Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119–128. DOI
McLeod, G., Gries, R., Von Reuß, S. H., Rahe, J. E., McIntosh, R., König, W. A., & Gries, G. (2005). The pathogen causing Dutch elm disease makes host trees attract insect vectors. Proceedings of the Royal Society B: Biological Sciences, 272(1580), 2499–2503. DOI
Meng, L., Zhang, A., Wang, F., Han, X., Wang, D., & Li, S. (2015). Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Frontiers in Plant Science, 6, 339. DOI
Mijangos, I., Albizu, I., Epelde, L., Amezaga, I., Mendarte, S., & Garbisu, C. (2010). Effects of liming on soil properties and plant performance of temperate mountainous grasslands. Journal of Environmental Management, 91(10), 2066–2074. DOI
Muccilli, S., & Restuccia, C. (2015). Bioprotective role of yeasts. Microorganisms, 3(4), 588–611. DOI
Murphy, B. W. (2014). Soil organic matter and soil function – Review of the literature and underlying data. Department of the Environment, Canberra, Australia. PDF
Naranjo‐Ortiz, M. A., & Gabaldón, T. (2019). Fungal evolution: Major ecological adaptations and evolutionary transitions. Biological Reviews, 94(4), 1443–1476. DOI
Ndoung, O. C. N., Figueiredo, C. C. D., & Ramos, M. L. G. (2021). A scoping review on biochar-based fertilizers: Enrichment techniques and agro-environmental application. Heliyon, 7(12), e08473. DOI
Ngoune Tandzi, L., Mutengwa, C., Ngonkeu, E., & Gracen, V. (2018). Breeding maize for tolerance to acidic soils: A review. Agronomy, 8(6), 84. DOI
Nunes, F. C., De Jesus Alves, L., De Carvalho, C. C. N., Gross, E., De Marchi Soares, T., & Prasad, M. N. V. (2020). Soil as a complex ecological system for meeting food and nutritional security. In Climate Change and Soil Interactions (pp. 229–269). Elsevier. DOI
Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L., & Kullberg, B. J. (2018). Invasive candidiasis. Nature Reviews Disease Primers, 4(1), 18026. DOI
Parapouli, M., Vasileiadis, A., Afendra, A. S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6(1), 1-31. DOI
Raasch-Fernandes, L. D., Bonaldo, S. M., de Jesus Rodrigues, D., Vieira-Junior, G. M., Schwan-Estrada, K. R. F., da Silva, C. R., Verçosa, A. G. A., de Oliveira, D. L., & Debiasi, B. W. (2019). Induction of phytoalexins and proteins related to pathogenesis in plants treated with extracts of cutaneous secretions of southern Amazonian Bufonidae amphibians. PLoS ONE, 14(1). DOI
Rozanov, A. S., Pershina, E. G., Bogacheva, N. V., Shlyakhtun, V., Sychev, A. A., & Peltek, S. E. (2020). Diversity and occurrence of methylotrophic yeasts used in genetic engineering. Vavilov Journal of Genetics and Breeding, 24(2), 149–157. DOI
Schlegel, H. G., & Jannasch, H. W. (2006). Prokaryotes and their habitats. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes (pp. 137–184). Springer New York. DOI
Shamshuddin, J., & Anda, M. (2008). Charge properties of soils in Malaysia dominated by kaolinite, gibbsite, goethite and hematite. Bulletin of the Geological Society of Malaysia, 54, 27-31. DOI
Sicard, D., & Legras, J.-L. (2011). Bread, beer and wine: Yeast domestication in the Saccharomyces sensu stricto complex. Comptes Rendus Biologies, 334(3), 229–236. DOI
Singh, A., Kumar, M., Chakdar, H., Pandiyan, K., Kumar, S. C., Zeyad, M. T., Singh, B. N., Ravikiran, K. T., Mahto, A., Srivastava, A. K., & Saxena, A. K. (2022). Influence of host genotype in establishing root associated microbiome of indica rice cultivars for plant growth promotion. Frontiers in Microbiology, 13, 1033158. DOI
Steglińska, A., Kołtuniak, A., Berłowska, J., Czyżowska, A., Szulc, J., Cieciura-Włoch, W., Okrasa, M., Kręgiel, D., & Gutarowska, B. (2022). Metschnikowia pulcherrima as a biocontrol agent against potato (Solanum tuberosum) pathogens. Agronomy, 12(10), 2546. DOI
Stuart Chapin III, F., McFarland, J., David McGuire, A., Euskirchen, E. S., Ruess, R. W., & Kielland, K. (2009). The changing global carbon cycle: Linking plant–soil carbon dynamics to global consequences. Journal of Ecology, 97(5), 840–850. DOI
Suh, S.-O., Nguyen, N. H., & Blackwell, M. (2008). Yeasts isolated from plant-associated beetles and other insects: Seven novel Candida species near Candida albicans. FEMS Yeast Research, 8(1), 88–102. DOI
Sumner, M., & Noble, A. (2003). Soil acidification: The world story. In Z. Rengel (Ed.), Handbook of Soil Acidity. CRC Press. DOI
Syed, S., Wang, X., Prasad, T. N. V. K. V., & Lian, B. (2021). Bio-organic mineral fertilizer for sustainable agriculture: Current trends and future perspectives. Minerals, 11(12), 1336. DOI
Thomas, G. W. (2018). Soil pH and soil acidity. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), SSSA Book Series (pp. 475–490). Soil Science Society of America, American Society of Agronomy DOI
Verbruggen, E., Pena, R., Fernandez, C. W., & Soong, J. L. (2017). Mycorrhizal interactions with saprotrophs and impact on soil carbon storage. In Mycorrhizal Mediation of Soil (pp. 441–460). Elsevier. DOI
Voidarou, C., Antoniadou, Μ., Rozos, G., Tzora, A., Skoufos, I., Varzakas, T., Lagiou, A., & Bezirtzoglou, E. (2020). Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods, 10(1), 69. DOI
Von Uexküll, H. R., & Mutert, E. (1995). Global extent, development and economic impact of acid soils. Plant and Soil, 171(1), 1–15. DOI
Wang, J., Zhao, G., Zhuang, Y., Chai, J., & Zhang, N. (2022). Yeast (Saccharomyces cerevisiae) culture promotes the performance of fattening sheep by enhancing nutrients digestibility and rumen development. Fermentation, 8(12), 719. DOI
White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7), 1073–1080. DOI
Xiang, L., Harindintwali, J. D., Wang, F., Redmile-Gordon, M., Chang, S. X., Fu, Y., He, C., Muhoza, B., Brahushi, F., Bolan, N., Jiang, X., Ok, Y. S., Rinklebe, J., Schaeffer, A., Zhu, Y., Tiedje, J. M., & Xing, B. (2022). Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environmental Science & Technology, 56(23), 16546–16566. DOI
Yamamoto, K., Shiwa, Y., Ishige, T., Sakamoto, H., Tanaka, K., Uchino, M., Tanaka, N., Oguri, S., Saitoh, H., & Tsushima, S. (2018). Bacterial diversity associated with the rhizosphere and endosphere of two halophytes: Glaux maritima and salicornia europaea. Frontiers in Microbiology, 9, 2878. DOI
Yan, P., Wu, L., Wang, D., Fu, J., Shen, C., Li, X., Zhang, L., Zhang, L., Fan, L., & Wenyan, H. (2020). Soil acidification in Chinese tea plantations. Science of The Total Environment, 715, 136963. DOI
Yazie, T., Mekonnen, M., & Derebe, A. (2021). Gully erosion and its impacts on soil loss and crop yield in three decades, northwest Ethiopia. Modeling Earth Systems and Environment, 7(4), 2491–2500. DOI
Zhang, Q., Li, Y., Xing, J., Brookes, P. C., & Xu, J. (2019). Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils. Science of The Total Environment, 658, 723–731. DOI
Zhang, X., Li, B., Zhang, Z., Chen, Y., & Tian, S. (2020). Antagonistic yeasts: A promising alternative to chemical fungicides for controlling postharvest decay of fruit. Journal of Fungi, 6(3), 158. DOI
Zibilske, L. (1998). Handbook of soil conditioners: Substances that enhance the physical properties of soil: Soil Science, 163(12), 982–983. DOI
Zubrzycki, S., Kutzbach, L., & Pfeiffer, E.-M. (2014). Permafrost-affected soils and their carbon pools with a focus on the Russian Arctic. Solid Earth, 5(2), 595–609. DOI
DOI: http://doi.org/10.17503/agrivita.v46i1.4241
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.