Utilization of Yeasts in Promoting Plant Growth in Acidic Soil – A Review

Darshini Rawichandran, Susilawati Kasim, Ali Tan Kee Zuan, Mohd Izuan Effendi, Sriharan Raguraj


The ecosystem's biodiversity and soil microorganisms are impacted by the increasing use of synthetic fertilizers and pesticides, which causes soil acidity and limits the sustainability of agricultural output. The majority of microbial functions in acidic soil are inhibited because of decreasing nutrient cycling and organic matter decomposition as well as diminishing bacterial and fungal growth and reproduction.  In light of these growing concerns, the use of microorganisms as bio fertilizers is a recommended as alternative agricultural practice. Recent times have brought about a change in the paucity of study on yeasts and their ability to safely boost plant growth. Numerous works on bacteria have been made available. The primary objective of the study is to highlight the widespread application of yeasts in sustainable agricultural practices to promote plant growth in acidic soils. All of the advantages that yeasts provide may contribute to the growth of plants. Therefore, a thorough investigation into yeasts may be fruitful and offer a sustainable means of boosting agricultural yields that are necessary in acidic soil.


Crop production; Growth promoter; Problematic soil; Sustainability; Yeasts

Full Text:



Adomako, M. O., Roiloa, S., & Yu, F.-H. (2022). Potential roles of soil microorganisms in regulating the effect of soil nutrient heterogeneity on plant performance. Microorganisms, 10(12), 2399. DOI

Agegnehu, G., Amede, T., Erkossa, T., Yirga, C., Henry, C., Tyler, R., Nosworthy, M. G., Beyene, S., & Sileshi, G. W. (2021). Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: A review. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71(9), 852–869. DOI

Ahuja, I., Kissen, R., & Bones, A. M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17(2), 73–90. DOI

Aitzhanova, A., Oleinikova, Y., Mounier, J., Hymery, N., Leyva Salas, M., Amangeldi, A., Saubenova, M., Alimzhanova, M., Ashimuly, K., & Sadanov, A. (2021). Dairy associations for the targeted control of opportunistic Candida. World Journal of Microbiology and Biotechnology, 37(8), 143. DOI

Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., Almutairi, K. F., & Al-Saif, A. M. (2021). Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5), 993. DOI

Barth, V. P., Reardon, C. L., Coffey, T., Klein, A. M., McFarland, C., Huggins, D. R., & Sullivan, T. S. (2018). Stratification of soil chemical and microbial properties under no-till after liming. Applied Soil Ecology, 130, 169–177. DOI

Bedigian, D. (2005). Sustainable soils. The place of organic matter in sustaining soils and their productivity. Economic Botany, 59(4), 410–410. DOI

Botha, A. (2011). The importance and ecology of yeasts in soil. Soil Biology and Biochemistry, 43(1), 1–8. DOI

Bruner, J., & Fox, G. (2020). Novel non-cerevisiae saccharomyces yeast species used in beer and alcoholic beverage fermentations. Fermentation, 6(4), 116. DOI

Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., De Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., Van Groenigen, J. W., & Brussaard, L. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105–125. DOI

Butinar, L., Santos, S., Spencer-Martins, I., Oren, A., & Gunde-Cimerman, N. (2005). Yeast diversity in hypersaline habitats. FEMS Microbiology Letters, 244(2), 229–234. DOI

Cai, Z., Wang, B., Xu, M., Zhang, H., He, X., Zhang, L., & Gao, S. (2015). Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. Journal of Soils and Sediments, 15(2), 260–270. DOI

Carmona-Hernandez, S., Reyes-Pérez, J., Chiquito-Contreras, R., Rincon-Enriquez, G., Cerdan-Cabrera, C., & Hernandez-Montiel, L. (2019). Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy, 9(3), 121. DOI

Castellini, M., Diacono, M., Gattullo, C. E., & Stellacci, A. M. (2021). Sustainable agriculture and soil conservation. Applied Sciences, 11(9), 4146. DOI

Chintala, R., McDonald, L. M., & Bryan, W. B. (2012). Effect of soil water and nutrients on productivity of kentucky bluegrass system in acidic soils. Journal of Plant Nutrition, 35(2), 288–303. DOI

Christel, A., Maron, P.-A., & Ranjard, L. (2021). Impact of farming systems on soil ecological quality: A meta-analysis. Environmental Chemistry Letters, 19(6), 4603–4625. DOI

Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: A choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11(8), 664–691. DOI

Dawson, C. J., & Hilton, J. (2011). Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy, 36, S14–S22. DOI

Di Canito, A., Mateo-Vargas, M. A., Mazzieri, M., Cantoral, J., Foschino, R., Cordero-Bueso, G., & Vigentini, I. (2021). The role of yeasts as biocontrol agents for pathogenic fungi on postharvest grapes: A review. Foods, 10(7), 1650. DOI

Elghandour, M. M. Y., Tan, Z. L., Abu Hafsa, S. H., Adegbeye, M. J., Greiner, R., Ugbogu, E. A., Cedillo Monroy, J., & Salem, A. Z. M. (2020). Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo‐ruminant feeding: A review. Journal of Applied Microbiology, 128(3), 658–674. DOI

Elita, N., Illahi, A. K., Sari, D. A., Yulensri, Y., Maulina, F., Karmaita, Y., Kurniasih, D., Yulita, R., & Yanti, R. (2022). Effect of types of organic materials and microbial enrichment on C/N ratio, nutrition of compost, and microbe population with Trichoderma sp. indigenous activators. Res Militaris, 12(6), 205–217. website

Erten, H., Ağirman, B., Gündüz, C. P. B., Çarşanba, E., Sert, S., Bircan, S., & Tangüler, H. (2014). Importance of yeasts and lactic acid bacteria in food processing. In A. Malik, Z. Erginkaya, S. Ahmad, & H. Erten (Eds.), Food Processing: Strategies for Quality Assessment (pp. 351–378). Springer New York. DOI

Fageria, N. K., Baligar, V. C., & Li, Y. C. (2008). The role of nutrient efficient plants in improving crop yields in the twenty first century. Journal of Plant Nutrition, 31(6), 1121–1157. DOI

Faniyi, T. O., Adegbeye, M. J., Elghandour, M. M. M. Y., Pilego, A. B., Salem, A. Z. M., Olaniyi, T. A., Adediran, O., & Adewumi, M. K. (2019). Role of diverse fermentative factors towards microbial community shift in ruminants. Journal of Applied Microbiology, 127(1), 2–11. DOI

Faria-Oliveira, F., Diniz, R. H. S., Godoy-Santos, F., Piló, F. B., Mezadri, H., Castro, I. M., & Brandão, R. L. (2015). The role of yeast and lactic acid bacteria in the production of fermented beverages in South America. In A. H. A. Eissa (Ed.), Food Production and Industry. InTech. DOI

Fenner, E. D., Scapini, T., Da Costa Diniz, M., Giehl, A., Treichel, H., Álvarez-Pérez, S., & Alves, S. L. (2022). Nature’s most fruitful threesome: The relationship between yeasts, insects, and angiosperms. Journal of Fungi, 8(10), 984. DOI

Ferraz, P., Cássio, F., & Lucas, C. (2019). Potential of yeasts as biocontrol agents of the phytopathogen causing cacao witches’ broom disease: Is microbial warfare a solution? Frontiers in Microbiology, 10, 1766. DOI

Fleet, G. H. (2011). Yeast spoilage of foods and beverages. In The Yeasts (pp. 53–63). Elsevier. DOI

Freimoser, F. M., Rueda-Mejia, M. P., Tilocca, B., & Migheli, Q. (2019). Biocontrol yeasts: Mechanisms and applications. World Journal of Microbiology and Biotechnology, 35(10), 154. DOI

Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., & Sarniguet, A. (2011). Bacterial-fungal interactions: Hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology Reviews, 75(4), 583–609. DOI

Gadanho, M., Almeida, J. M., & Sampaio, J. P. (2003). Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie van Leeuwenhoek, 84(3), 217–227. DOI

Gazey, C., & Andrew, J. (2009). Soil pH in northern and southern areas of the WA wheatbelt. Bulletin 4761. PDF

Geronikou, A., Larsen, N., Lillevang, S. K., & Jespersen, L. (2022). Occurrence and identification of yeasts in production of white-brined cheese. Microorganisms, 10(6), 1079. DOI

Gondal, A. H., Farooq, Q., Hussain, I., & Toor, M. D. (2021). Role of microbes in plant growth and food preservation. Agrinula: Jurnal Agroteknologi Dan Perkebunan, 4(2), 106–121. DOI

Grzyb, A., Wolna-Maruwka, A., & Niewiadomska, A. (2021). The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy, 11(7), 1415. DOI

Gupta, A., Gupta, R., & Singh, R. L. (2017). Microbes and environment. In R. L. Singh (Ed.), Principles and Applications of Environmental Biotechnology for a Sustainable Future (pp. 43–84). Springer Singapore. DOI

Hattori, D., Kenzo, T., Shirahama, T., Harada, Y., Kendawang, J. J., Ninomiya, I., & Sakurai, K. (2019). Degradation of soil nutrients and slow recovery of biomass following shifting cultivation in the heath forests of Sarawak, Malaysia. Forest Ecology and Management, 432, 467–477. DOI

Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60(4), 579–598. DOI

Hernández-Fernández, M., Cordero-Bueso, G., Ruiz-Muñoz, M., & Cantoral, J. M. (2021). Culturable yeasts as biofertilizers and biopesticides for a sustainable agriculture: A comprehensive review. Plants, 10(5), 822. DOI

Howieson, J. G., & Ewing, M. A. (1986). Acid tolerance in the Rhizobium meliloti–Medicago symbiosis. Australian Journal of Agricultural Research, 37(1), 55-64. DOI

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. Frontiers in Plant Science, 8, 1617. DOI

John, D. A., & Babu, G. R. (2021). Lessons from the aftermaths of green revolution on food system and health. Frontiers in Sustainable Food Systems, 5, 644559. DOI

Johnson, E. A. (2013). Biotechnology of non-Saccharomyces yeasts—The basidiomycetes. Applied Microbiology and Biotechnology, 97(17), 7563–7577. DOI

Jwaideh, M. A. A., Sutanudjaja, E. H., & Dalin, C. (2022). Global impacts of nitrogen and phosphorus fertiliser use for major crops on aquatic biodiversity. The International Journal of Life Cycle Assessment, 27(8), 1058–1080. DOI

Kaur, S., Samota, M. K., Choudhary, M., Choudhary, M., Pandey, A. K., Sharma, A., & Thakur, J. (2022). How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants, 28(2), 485–504. DOI

Kowalska, J., Krzymińska, J., & Tyburski, J. (2022). Yeasts as a potential biological agent in plant disease protection and yield improvement—A short review. Agriculture, 12(9), 1404. DOI

Kuzyakov, Y., & Xu, X. (2013). Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytologist, 198(3), 656–669. DOI

Laekemariam, F., Kibret, K., Mamo, T., Karltun, E., & Gebrekidan, H. (2016). Physiographic characteristics of agricultural lands and farmers’ soil fertility management practices in Wolaita zone, Southern Ethiopia. Environmental Systems Research, 5(1), 24. DOI

Larimer, A. L., Clay, K., & Bever, J. D. (2014). Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 95(4), 1045–1054. DOI

Liu, Y., He, G., He, T., & Saleem, M. (2022). Signaling and detoxification strategies in plant-microbes symbiosis under heavy metal stress: A mechanistic understanding. Microorganisms, 11(1), 69. DOI

Ljunggren, J., Borrero-Echeverry, F., Chakraborty, A., Lindblom, T. U. T., Hedenström, E., Karlsson, M., Witzgall, P., & Bengtsson, M. (2019). Yeast volatomes differentially affect larval feeding in an insect herbivore. Applied and Environmental Microbiology, 85(21), e01761-19. DOI

Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577. DOI

Mack, M., Wannemacher, M., Hobl, B., Pietschmann, P., & Hock, B. (2009). Comparison of two expression platforms in respect to protein yield and quality: Pichia pastoris versus Pichia angusta. Protein Expression and Purification, 66(2), 165–171. DOI

Maicas, S. (2020). The role of yeasts in fermentation processes. Microorganisms, 8(8), 1142. DOI

Malassigné, S., Minard, G., Vallon, L., Martin, E., Valiente Moro, C., & Luis, P. (2021). Diversity and functions of yeast communities associated with insects. Microorganisms, 9(8), 1552. DOI

Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119–128. DOI

McLeod, G., Gries, R., Von Reuß, S. H., Rahe, J. E., McIntosh, R., König, W. A., & Gries, G. (2005). The pathogen causing Dutch elm disease makes host trees attract insect vectors. Proceedings of the Royal Society B: Biological Sciences, 272(1580), 2499–2503. DOI

Meng, L., Zhang, A., Wang, F., Han, X., Wang, D., & Li, S. (2015). Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Frontiers in Plant Science, 6, 339. DOI

Mijangos, I., Albizu, I., Epelde, L., Amezaga, I., Mendarte, S., & Garbisu, C. (2010). Effects of liming on soil properties and plant performance of temperate mountainous grasslands. Journal of Environmental Management, 91(10), 2066–2074. DOI

Muccilli, S., & Restuccia, C. (2015). Bioprotective role of yeasts. Microorganisms, 3(4), 588–611. DOI

Murphy, B. W. (2014). Soil organic matter and soil function – Review of the literature and underlying data. Department of the Environment, Canberra, Australia. PDF

Naranjo‐Ortiz, M. A., & Gabaldón, T. (2019). Fungal evolution: Major ecological adaptations and evolutionary transitions. Biological Reviews, 94(4), 1443–1476. DOI

Ndoung, O. C. N., Figueiredo, C. C. D., & Ramos, M. L. G. (2021). A scoping review on biochar-based fertilizers: Enrichment techniques and agro-environmental application. Heliyon, 7(12), e08473. DOI

Ngoune Tandzi, L., Mutengwa, C., Ngonkeu, E., & Gracen, V. (2018). Breeding maize for tolerance to acidic soils: A review. Agronomy, 8(6), 84. DOI

Nunes, F. C., De Jesus Alves, L., De Carvalho, C. C. N., Gross, E., De Marchi Soares, T., & Prasad, M. N. V. (2020). Soil as a complex ecological system for meeting food and nutritional security. In Climate Change and Soil Interactions (pp. 229–269). Elsevier. DOI

Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L., & Kullberg, B. J. (2018). Invasive candidiasis. Nature Reviews Disease Primers, 4(1), 18026. DOI

Parapouli, M., Vasileiadis, A., Afendra, A. S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6(1), 1-31. DOI

Raasch-Fernandes, L. D., Bonaldo, S. M., de Jesus Rodrigues, D., Vieira-Junior, G. M., Schwan-Estrada, K. R. F., da Silva, C. R., Verçosa, A. G. A., de Oliveira, D. L., & Debiasi, B. W. (2019). Induction of phytoalexins and proteins related to pathogenesis in plants treated with extracts of cutaneous secretions of southern Amazonian Bufonidae amphibians. PLoS ONE, 14(1). DOI

Rozanov, A. S., Pershina, E. G., Bogacheva, N. V., Shlyakhtun, V., Sychev, A. A., & Peltek, S. E. (2020). Diversity and occurrence of methylotrophic yeasts used in genetic engineering. Vavilov Journal of Genetics and Breeding, 24(2), 149–157. DOI

Schlegel, H. G., & Jannasch, H. W. (2006). Prokaryotes and their habitats. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes (pp. 137–184). Springer New York. DOI

Shamshuddin, J., & Anda, M. (2008). Charge properties of soils in Malaysia dominated by kaolinite, gibbsite, goethite and hematite. Bulletin of the Geological Society of Malaysia, 54, 27-31. DOI

Sicard, D., & Legras, J.-L. (2011). Bread, beer and wine: Yeast domestication in the Saccharomyces sensu stricto complex. Comptes Rendus Biologies, 334(3), 229–236. DOI

Singh, A., Kumar, M., Chakdar, H., Pandiyan, K., Kumar, S. C., Zeyad, M. T., Singh, B. N., Ravikiran, K. T., Mahto, A., Srivastava, A. K., & Saxena, A. K. (2022). Influence of host genotype in establishing root associated microbiome of indica rice cultivars for plant growth promotion. Frontiers in Microbiology, 13, 1033158. DOI

Steglińska, A., Kołtuniak, A., Berłowska, J., Czyżowska, A., Szulc, J., Cieciura-Włoch, W., Okrasa, M., Kręgiel, D., & Gutarowska, B. (2022). Metschnikowia pulcherrima as a biocontrol agent against potato (Solanum tuberosum) pathogens. Agronomy, 12(10), 2546. DOI

Stuart Chapin III, F., McFarland, J., David McGuire, A., Euskirchen, E. S., Ruess, R. W., & Kielland, K. (2009). The changing global carbon cycle: Linking plant–soil carbon dynamics to global consequences. Journal of Ecology, 97(5), 840–850. DOI

Suh, S.-O., Nguyen, N. H., & Blackwell, M. (2008). Yeasts isolated from plant-associated beetles and other insects: Seven novel Candida species near Candida albicans. FEMS Yeast Research, 8(1), 88–102. DOI

Sumner, M., & Noble, A. (2003). Soil acidification: The world story. In Z. Rengel (Ed.), Handbook of Soil Acidity. CRC Press. DOI

Syed, S., Wang, X., Prasad, T. N. V. K. V., & Lian, B. (2021). Bio-organic mineral fertilizer for sustainable agriculture: Current trends and future perspectives. Minerals, 11(12), 1336. DOI

Thomas, G. W. (2018). Soil pH and soil acidity. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), SSSA Book Series (pp. 475–490). Soil Science Society of America, American Society of Agronomy DOI

Verbruggen, E., Pena, R., Fernandez, C. W., & Soong, J. L. (2017). Mycorrhizal interactions with saprotrophs and impact on soil carbon storage. In Mycorrhizal Mediation of Soil (pp. 441–460). Elsevier. DOI

Voidarou, C., Antoniadou, Μ., Rozos, G., Tzora, A., Skoufos, I., Varzakas, T., Lagiou, A., & Bezirtzoglou, E. (2020). Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods, 10(1), 69. DOI

Von Uexküll, H. R., & Mutert, E. (1995). Global extent, development and economic impact of acid soils. Plant and Soil, 171(1), 1–15. DOI

Wang, J., Zhao, G., Zhuang, Y., Chai, J., & Zhang, N. (2022). Yeast (Saccharomyces cerevisiae) culture promotes the performance of fattening sheep by enhancing nutrients digestibility and rumen development. Fermentation, 8(12), 719. DOI

White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7), 1073–1080. DOI

Xiang, L., Harindintwali, J. D., Wang, F., Redmile-Gordon, M., Chang, S. X., Fu, Y., He, C., Muhoza, B., Brahushi, F., Bolan, N., Jiang, X., Ok, Y. S., Rinklebe, J., Schaeffer, A., Zhu, Y., Tiedje, J. M., & Xing, B. (2022). Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environmental Science & Technology, 56(23), 16546–16566. DOI

Yamamoto, K., Shiwa, Y., Ishige, T., Sakamoto, H., Tanaka, K., Uchino, M., Tanaka, N., Oguri, S., Saitoh, H., & Tsushima, S. (2018). Bacterial diversity associated with the rhizosphere and endosphere of two halophytes: Glaux maritima and salicornia europaea. Frontiers in Microbiology, 9, 2878. DOI

Yan, P., Wu, L., Wang, D., Fu, J., Shen, C., Li, X., Zhang, L., Zhang, L., Fan, L., & Wenyan, H. (2020). Soil acidification in Chinese tea plantations. Science of The Total Environment, 715, 136963. DOI

Yazie, T., Mekonnen, M., & Derebe, A. (2021). Gully erosion and its impacts on soil loss and crop yield in three decades, northwest Ethiopia. Modeling Earth Systems and Environment, 7(4), 2491–2500. DOI

Zhang, Q., Li, Y., Xing, J., Brookes, P. C., & Xu, J. (2019). Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils. Science of The Total Environment, 658, 723–731. DOI

Zhang, X., Li, B., Zhang, Z., Chen, Y., & Tian, S. (2020). Antagonistic yeasts: A promising alternative to chemical fungicides for controlling postharvest decay of fruit. Journal of Fungi, 6(3), 158. DOI

Zibilske, L. (1998). Handbook of soil conditioners: Substances that enhance the physical properties of soil: Soil Science, 163(12), 982–983. DOI

Zubrzycki, S., Kutzbach, L., & Pfeiffer, E.-M. (2014). Permafrost-affected soils and their carbon pools with a focus on the Russian Arctic. Solid Earth, 5(2), 595–609. DOI

DOI: http://doi.org/10.17503/agrivita.v46i1.4241

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.