Effect of Media and Plant Growth Regulator on Proliferation of Somatic Embryogenic Callus of Oil Palm (Elaeis gueenesis Jacq.)

Gogoh Sulaksono, Mery Hasmeda, Laila Hanum, Fahmi Wendra, Baitha Santika

Abstract


The Pisifera type oil palm is an important palm variety and mostly used as a pollen source to produce Tenera commercial hybrid varieties. This research on proliferating fertile Pisifera oil palm callus using somatic embryogenesis method was conducted at the Tissue Culture Laboratory of PT. Sampoerna Agro, Tbk from February to August 2021 to find out the optimum basal media and the concentration of growth regulators on callus proliferation. The planting material was the primary callus from the previous research. This study used a factorial Completely Randomized Design with two factors. The first factor involved two types of basal media: MS and Y3, and the second factor consisted of different concentrations of growth regulators (PGR). All treatments were repeated three times. The results showed that the use of MS media supplemented with 6 mg/l NAA and 0.5 mg/l 2,4-D was the most effective treatment for the proliferation of embryogenic callus in term of callus initiation time, the capacity of primary callus formation, primary calli morphology and proliferation, and callus fresh weight.


Keywords


Callus induction; Pisifera fertile; PRG concentration; Somatic embryogenesis; Spear leaf

Full Text:

PDF

References


Almeida, R. F., Meira, F. S., Gomes, H. T., Balzon, T. A., Bartos, P. M. C., Meira, R. D. O., da Cunha, R. N. V., Lopes, R., Mehta, A., & Scherwinski-Pereira, J. E. (2020). Capacity for somatic embryogenesis of adult oil palm genitors (Elaeis guineensis, var. Pisifera) from immature leaf tissues. South African Journal of Botany, 131, 229–239. https://doi.org/10.1016/j.sajb.2020.02.026

Constantin, M., Nchu, W. A., Godswill, N. N., Wiendi, N. M. A., Wachjar, A., & Frank, N. E. G. (2015). Induction of oil palm (Elaeis guineensis Jacq. var. Tenera) callogenesis and somatic embryogenesis from young leaf explants. Journal of Applied Biology & Biotechnology, 3(04), 004–010. https://doi.org/10.7324/jabb.2015.3402

Corley, R. H. V., & Tinker, P. B. (2015). The Oil Palm (1st ed.). Wiley. https://doi.org/10.1002/9781118953297

Eeuwens, C. J. (1976). Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiologia Plantarum, 36(1), 23–28. https://doi.org/10.1111/j.1399-3054.1976.tb05022.x

Fitriani, H., Aryaningrum, P. D., & Hartati, N. S. (2016). Proliferation of embryogenic callus of Satoimo taro (Colocasia esculenta var. antiquorum) in culture media with various levels of sucrose and gelling agent. Nusantara Bioscience, 8(1), 316–320. https://doi.org/10.13057/nusbiosci/n080230

Hapsoro, D., & Yusnita. (2016). Kultur jaringan untuk perbanyakan klonal kelapa sawit (Elaeis guineensis Jacq.). CV. Anugrah Utama Raharja (AURA).

Herawan, T., Na’iem, M., Indrioko, S., & Indrianto, A. (2014). Somatic embryogenesis of Sandalwood (Santalum album L.). Indonesian Journal of Biotechnology, 19(2), 168-175. https://doi.org/10.22146/ijbiotech.9311

Hidayati, J., Sukardi, Suryani, A., Fauzi, A.M., & Sugiharto. (2016). Identifikasi revitalisasi perkebunan kelapa sawit di Sumatera Utara. Jurnal Teknologi Industri Pertanian, 26(3), 255–265.

Jayusman, Hakim, L., & Dalimunthe, A. (2022). Season, basal media and plant growth regulators effect in wood plant in vitro propagation: A comprehensive review. IOP Conference Series: Earth and Environmental Science, 1115(1), 012051. https://doi.org/10.1088/1755-1315/1115/1/012051

Kartika, E., Lizawati, L., & Zulkarnain, Z. (2019). In vitro callus formation from male inflorescencens of oil palm (Elaeis guineensis Jacq.) by the application of picloram. Analele Universităţii din Oradea, Fascicula Biologie, 26(1), 57-61

Kumar, N., & Reddy, M. P. (2011). In vitro plant propagation: A review. Journal of Forest Science, 27(2), 61–72.

Kumlay, A. M., & Ercisli, S. (2015). Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long-day conditions. Biotechnology & Biotechnological Equipment, 29(6), 1075–1084. https://doi.org/10.1080/13102818.2015.1077685

Mahadi, I., Syafi’i, W., & Sari, Y. (2016). Induksi kalus jeruk kasturi (Citrus microcarpa) menggunakan hormon 2,4-D dan BAP dengan metode in vitro. Jurnal Ilmu Pertanian Indonesia, 21(2), 84–89. https://doi.org/10.18343/jipi.21.2.84

Mahadi, I., Wulandari, S., & Omar, A. (2014). Pembentukan kalus tanaman rosella (Hibiscus sabdariffa) pada pemberian naftalen acetyl acid (NAA) dan benzyl amino purin (BAP) sebagai sumber belajar konsep bioteknologi. Jurnal Biogenesis, 11(1), 1–6.

Mahadi, I., Wulandari, S., Safii, W., & Sayuti, I. (2021). Kultur suspensi sel tanaman gajah beranak (Goniothalamus tapis Miq) terhadap kandungan zat goniotalamin. Jurnal Agro, 8(2), 247–261. https://doi.org/10.15575/14710

Mostafiz, S. B., & Wagiran, A. (2018). Efficient callus induction and regeneration in selected Indica rice. Agronomy, 8, 77. https://doi.org/10.3390/agronomy8050077

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiologia Plantarum, 15, 473–497. https://doi.org/10.1016/S0031-9422(01)00179-0

Osman, N. I., Jaafar Sidik, N., & Awal, A. (2016). Effects of variations in culture media and hormonal treatments upon callus induction potential in endosperm explant of Barringtonia racemosa L. Asian Pacific Journal of Tropical Biomedicine, 6(2), 143–147. https://doi.org/10.1016/j.apjtb.2015.10.007

Pádua, M. S., Santos, R. S., Labory, C. R. G., Stein, V. C., Mendonça, E. G., Alves, E., & Paiva, L. V. (2018). Histodifferentiation of oil palm somatic embryo development at low auxin concentration. Protoplasma, 255(1), 285–295. https://doi.org/10.1007/s00709-017-1143-7

Panggabean, N. H., Nurwahyuni, I., Elimasni, & Basyuni, M. (2023). Somatic embryogenesis of oil palm (Elaeis guineensis Jacq.) from bud explants using suspension culture. OnLine Journal of Biological Sciences, 23(2), 236–242. https://doi.org/10.3844/OJBSCI.2023.236.242

Reflini. (2017). Evaluation of 2.4-D and NAA concentrations for callus and somatic embryos formation in oil palm. Journal of Advanced Agricultural Technologies, 4(3), 215-218. https://doi.org/10.18178/joaat.4.3.215-218

Robles-Martínez, M., Barba-De la Rosa, A., Guéraud, F., Negre-Salvayre, A., Rossignol, M., & Santos-Díaz, M. D. S. (2016). Establishment of callus and cell suspensions of wild and domesticated Opuntia species: Study on their potential as a source of metabolite production. Plant Cell, Tissue and Organ Culture, 124(1), 181–189. https://doi.org/10.1007/s11240-015-0886-0

Setiawan, K. (2017). Pemuliaan kelapa sawit; untuk produksi benih unggul: Tanaman pendek, kompak, dan minyak tak jenuh tinggi (Pertama). Plantaxia.

Silva-Cardoso, I. M. A., Meira, F. S., Gomes, A. C. M. M., & Scherwinski-Pereira, J. E. (2020). Histology, histochemistry and ultrastructure of pre-embryogenic cells determined for direct somatic embryogenesis in the palm tree Syagrus oleracea. Physiologia Plantarum, 168(4), 845–875. https://doi.org/10.1111/ppl.13026

Sinta, M. M., Saptari, R. T., Riyadi, I., & Sumaryono. (2023). Optimasi sistem kultur dan media untuk peningkatan tinggi tunas in vitro kelapa sawit. Menara Perkebunan, 91(1), 25–35. https://doi.org/10.22302/iribb.jur.mp.v91i1.511

Sari, R. A., Herawati, R., & Herison, C. (2019). Induction and growth of endosperm callus of Rimau Gerga Lebong (RGL) citrus on several media composition. Akta Agrosia 22(2), 56–62. https://doi.org/10.31186/aa.22.2.56-62

Sulaksono, G., Hasmeda, M., Hanum, L., Wendra, F., Santika, B., & Asmono, D. (2021). The effect of culture media type and plant growth regulators on callus induction of oil palm (Elaeis guineensis Jacq) Pisifera type. BIOVALENTIA: Biological Research Journal, 7(2), 55–60. https://doi.org/10.24233/biov.7.2.2021.224

Susilawati, & Bakhtiar, N. (2018). Biologi Dasar Terintegrasi (Pertama). Kreasi Edukasi.

Sutikno. (2018). Panduan mikroteknik tumbuhan. (pp. 30–33). Laboratorium Struktur dan Perkembangan Tumbuhan. Fakultas Biologi Universitas Gadjah Mada.

Wang, Y., Chen, F., Wang, Y., Li, X., & Liang, H. (2014). Efficient somatic embryogenesis and plant regeneration from immature embryos of Tapiscia sinensis Oliv., an endemic and endangered species in China. HortScience, 49(12), 1558–1562. https://doi.org/10.21273/hortsci.49.12.1558

Wardani, D. P., Solichatun, & Setyawan, A. D. (2004). Pertumbuhan dan produksi saponin kultur kalus Talinum paniculatum Gaertn. pada variasi penambahan asam 2,4-Diklorofenoksi Asetat (2,4-D) dan Kinetin. Biofarmasi, 2(1), 35–43. https://doi.org/10.13057/biofar/f020106

Zi, Y., Ding, J., Song, J., Humphreys, G., Peng, Y., Li, C., Zhu, X., & Guo, W. (2018). Grain yield, starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.). Scientific Reports, 8, 4548. https://doi.org/10.1038/s41598-018-22587-0




DOI: http://doi.org/10.17503/agrivita.v46i2.4234

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.