Impacts of Climate Change on Soil Microbial Interactions: Echoes of the New Normal
Abstract
Concerns over the negative impacts of climate change on ecosystems and human life have entered a new phase where many hypothetical views are fast becoming realities. Presently, the rampaging effect of climate change is, in theory, causing ecological catastrophes, and it is being felt at an alarming scale worldwide. As an important ecological niche, the soil ecosystem hosts a diversity of microbiomes and macrobiomes and affords a soil-plant-microbes ecological continuum. Also, it supports essential ecological processes meant to promote life-sustaining habits. However, changes in plant diversity due to increasing greenhouse effects, anthropogenic activities, and global warming have severely impacted the stability of soil microbial communities and interactions, particularly the soil-plant-microbe interaction. A good understanding of the mechanisms underpinning the plant-soil-microbial interactions, the complexity of the soil microbiome, ecosystem adaptability to climate change-induced stresses, and niche functionality of microbiota is necessary for the empirical impact assessment of climate change on soil microbial behaviors. Moreover, the soil system parameters and the various ecological services affected need to be further studied to identify opportunities that could assist the quest to mitigate the debilitating effects of climatic change in the soil ecosystem and sustainable food security initiatives.
Keywords
Full Text:
PDFReferences
Aamir, M., Rai, K. K., Dubey, M. K., Zehra, A., Tripathi, Y. N., Divyanshu, K., Samal, S., & Upadhyay, R. S. (2019). Impact of Climate Change on Soil Carbon Exchange, Ecosystem Dynamics, and Plant–Microbe Interactions. In Climate Change and Agricultural Ecosystems (pp. 379–413). Woodhead Publishing. DOI
Abe, H., Mitsui, S., & Yamano, H. (2022). Conservation of the coral community and local stakeholders’ perceptions of climate change impacts: Examples and gap analysis in three Japanese national parks. Ocean & Coastal Management, 218, 106042. DOI
Aftab T., & Naeem M. (editors). (2022). Emerging plant growth regulators in agriculture: roles of stress tolerance. Academic Press. 450p. DOI
Amanifar S., & Toghranegar Z. (2020). The efficiency of arbuscular mychorriza for improving tolerance of Valeriana officinalis L. and enhancing valerenic acid accumulation under salinity stress. Industrial Crops and Products, 147,112234. DOI
Babalola, O.O., Fadiji, A., Enagbonma, B.J., Alori, E.T., Ayilara, M., & Ayangbenro, A.S. (2020). The nexus between plant and plant microbiome: revelation of the networking strategies. Frontier in Microbiology, 11, 548037. DOI
Bakker P.A.H.M., Pieterse C.M.J., de Jonge R., & Berendsen R.L. (2018) The soil-borne legacy. Cell, 172(6),1178–1180. DOI
Balima, L.H., Nacoulma, B.M.I., Da, S.S., Ouédraogo, A., Soro, D., & Thiombiano, A. (2022). Impacts of climate change on the geographic distribution of African oak tree (Azelia africana Sm.) in Burkina Faso, West Africa. Heliyon, 8(1), e08688. DOI
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.-C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., … Schloter, M. (2020). Microbiome definition re-visited: Old concepts and new challenges. Microbiome, 8(1), 103. DOI
Berg, M. P., Kiers, E. T., Driessen, G., Van Der Heijden, M., Kooi, B. W., Kuenen, F., Liefting, M., Verhoef, H. A., & Ellers, J. (2010). Adapt or disperse: Understanding species persistence in a changing world. Global Change Biology, 16(2), 587–598. DOI
Bever, J.D. (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157(3), 465-473. DOI
Bever, J.D., Platt, T.G., & Morton, E.R. (2012). Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annual Review of Microbiology, 66(1), 265–283. DOI
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59–67. DOI
Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., Behrenfeld, M. J., Boetius, A., Boyd, P. W., Classen, A. T., Crowther, T. W., Danovaro, R., Foreman, C. M., Huisman, J., Hutchins, D. A., Jansson, J. K., Karl, D. M., Koskella, B., Mark Welch, D. B., … Webster, N. S. (2019). Scientists’ warning to humanity: Microorganisms and climate change. Nature Reviews Microbiology, 17(9), 569–586. DOI
Chen, S., Zou, J., Hu, Z., Chen, H., & Lu, Y. (2014). Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agricultural and Forest Meteorology, 198–199, 335–346. DOI
Cho, R. (2018). What Helps Animals Adapt (or Not) to Climate Change? Columbia Climate School. website
Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A. M., Cregger, M. A., Moorhead, L. C., & Patterson, C. M. (2015). Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: What lies ahead? Ecosphere, 6(8), 1–21. DOI
Denchak, M., & Turrentine, J. (2021). Global climate change: what you need to know. Available: website. Accessed 12th January 2022.
Desaki, Y., Miyata, K., Suzuki, M., Shibuya, N., & Kaku, H. (2018). Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immunity, 24(2), 92-100. DOI
Dubey, A., Malla, M. A., Khan, F., Chowdhary, K., Yadav, S., Kumar, A., Sharma, S., Khare, P. K., & Khan, M. L. (2019). Soil microbiome: A key player for conservation of soil health under changing climate. Biodiversity and Conservation, 28(8–9), 2405–2429. DOI
Franzino, T., Boubakri, H., Cernava, T., Abrouk, D., Achouak, W., Reverchon, S., Nasser, W., & Haichar, F. E. Z. (2022). Implications of carbon catabolite repression for plant–microbe interactions. Plant Communications, 3(2), 100272. DOI
Gourion, B., & Ratet, P. (2021). Avoidance of detrimental defense responses in beneficial plant–microbe interactions. Current Opinion in Biotechnology, 70, 266–272. DOI
Hamann, E., Denney, D., Day, S., Lombardi, E., Jameel, M. I., MacTavish, R., & Anderson, J. T. (2021). Review: Plant eco-evolutionary responses to climate change: Emerging directions. Plant Science, 304, 110737. DOI
Hemkemeyer, M., Schwalb, S.A., Heinze, S., Joergensen, R.G., & Wichern, F. (2021). Functions of elements in soil microorganisms. Microbiological Research, 252, 126832. DOI
Ihaddadene, N., Ihaddadene, R., Betka, A., & Beghidja, A. H. (2017). Experimental study of the effect of soil type on global warming using laboratory thermal collector. International Journal of Hydrogen Energy, 42(30), 19576-19582. DOI
Jiang, S., Xiao, B., Fan, X., Li, Y., Ma, X., Wang, J., Yue, B., & Zi, H. (2022). Roles of plants in controlling the response of soil bacterial community to climate warming on the Qinghai-Tibetan Plateau. European Journal of Soil Biology, 110, 103401. DOI
Ke, P.J., Zee, P.C., & Fukami, T. (2021). Dynamic plant–soil microbe interactions: the neglected effect of soil conditioning time. New Phytologist, 231(4), 1546-1558. DOI
Keeler, A.M., Rose-Person, A., & Rafferty, N. E. (2021). From the ground up: building predictions for how climate change will affect belowground mutualisms, floral traits, and bee behavior. Climate Change Ecology, 1, 100013. DOI
Kim, J.H., Kim, J.H., Jung, K.H., & Jang, C.S. (2022). OsSIRH2-23, a rice salt-induced RING finger protein H2-23, contributes to insensitivity to salinity stress. Environmental and Experimental Botany, 194, 104715. DOI
Klenert, D., Funke, F., Mattauch, L., & O’Callaghan, B. (2020). Five lessons from COVID-19 for advancing climate change mitigation. Environment and Resource Economics, 76(4), 751-778. DOI
Krasnova, A., Mander, Ü., Noe, S. M., Uri, V., Krasnov, D., & Soosaar, K. (2022). Hemiboreal forests' CO2 fluxes response to the European 2018 heatwave. Agricultural and Forest Meteorology, 323, 109042. DOI
Kreyling, J., Puechmaille, S.J.., Malyshev, A.V., & Valladares, F. (2019). Phenotypic plasticity is closely linked to climate at origin and resulting in increased mortality under warming and frost stress in a common grass. Ecology and Evolution, 9(3), 1344–1352. DOI
Kumawat, K.C., Nagpal, S., & Sharma, P. (2022). Potential of plant growth-promoting rhizobacteria-plant interaction in mitigating salt stress for sustainable agriculture: a review. Pedosphere, 32(2), 223-245. DOI
Lakshmanan, V., Selvaraj, G., & Bais, H.P. (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Journal of Plant Physiology, 166(2), 689–700. DOI
Li, J., Zhu, T., Singh, B. K., Pendall, E., Li, B., Fang, C., & Nie, M. (2021). Key microorganisms mediate soil carbon-climate feedbacks in forest ecosystems. Science Bulletin, 66(19), 2036–2044. DOI
Lladó, S., López-Mondéjar, R., & Baldrian, P. (2018). Drivers of microbial community structure in forest soils. Applied Microbiolog and Biotechnology, 102(10), 4331–4338. DOI
Mojumdar, A., Behera, H. T., Das, S., & Ray, L. (2022). Microbe-based plant biostimulants and their formulations for growth promotion and stress tolerance in plants. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 213-230). Elsevier. DOI
NASA (2017). What is climate change? National Aeronautics and Space Administration. Available: website. Accessed 12th January 2022.
Noman, A., Aqeel, M., Qari, S. H., Al Surhanee, A. A., Yasin, G., Alamri, S., Hashem, M., & M Al-Saadi, A. (2020). Plant hypersensitive response vs pathogen ingression: Death of few gives life to others. Microbial Pathogenesis, 145, 104224. DOI
Olanrewaju, O. S., Ayangbenro, A. S., Glick, B. R., & Babalola, O. O. (2019). Plant health: Feedback effect of root exudates-rhizobiome interactions. Applied Microbiology and Biotechnology, 103(3), 1155–1166. DOI
Osaka, S., & Bellamy, R. (2020). Natural variability or climate change? Stakeholder and citizen perceptions of extreme event attribution. Global Environmental Chang, 62, 102070. DOI
Pattnaik, S., Mohapatra, B., & Gupta, A. (2021) Plant Growth-Promoting Microbe Mediated Uptake of Essential Nutrients (Fe, P, K) for Crop Stress Management: Microbe–Soil–Plant Continuum. Frontier in Agronomy, 3, 689972. DOI
Penna, S., & Naithani, S. (2022). Understanding the plant’s response to global climate change using Omics. Current Plant Biology, 29, 100241. DOI
Peñuelas, J., Rico, L., Ogaya, R., Jump, A. S., & Terradas, J. (2012). Summer season and long‐term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biology, 14(4), 565–575. DOI
Pusch, E.A., Bentz, A.B., Becker, D.J., & Navara, K.J. (2018). Behavioral phenotype predicts physiological responses to chronic stress in proactive and reactive birds. General and Comparative Endocrinology, 255, 71-77. DOI
Riaz, M., Kamran, M., Fang, Y., Wang, Q., Cao, H., Yang, G., Deng, L., Wang, Y., Zhou, Y., Anastopoulos, I., & Wang, X. (2021). Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Journal of Hazardous Materials, 402, 123919. DOI
Rodrigues, J. M., Coutinho, F. S., Dos Santos, D. S., Vital, C. E., Ramos, J. R. L. S., Reis, P. B., Oliveira, M. G. A., Mehta, A., Fontes, E. P. B., & Ramos, H. J. O. (2021). BiP-overexpressing soybean plants display accelerated hypersensitivity response (HR) affecting the SA-dependent sphingolipid and flavonoid pathways. Phytochemistry, 185, 112704. DOI
Saud, S., Shi, Z., Xiong, L., Danish, S., Datta, R., Ahmad, I., Fahad, S., & Banout, J. (2022). Recognizing the Basics of Phytochrome-Interacting Factors in Plants for Abiotic Stress Tolerance. Plant Stress, 3, 100050. DOI
Schimel, J. (2016). Microbial ecology: linking omics to biogeochemistry. Nature Microbiology, 1(2),15028. DOI
Shahzad, R., Jamil, S., Ahmad, S., Nisar, A., Amina, Z., Saleem, S., Zaffar Iqbal, M., Muhammad Atif, R., & Wang, X. (2021). Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security: Current and future perspectives. Saudi Journal of Biological Sciences, 28(4), 2323–2341. DOI
Shao, P., Zeng, X., Moore, D. J. P., & Zeng, X. (2013). Soil microbial respiration from observations and Earth System Models. Environmental Research Letters, 8(3), 034034. DOI
Sharpley, R. (2016). Continuum model. In J. Jafari & H. Xiao (Eds.), Encyclopedia of Tourism (pp. 190–191). Springer International Publishing. DOI
Su, Z.-Z., Dai, M.-D., Zhu, J.-N., Liu, X.-H., Li, L., Zhu, X.-M., Wang, J.-Y., Yuan, Z.-L., & Lin, F.-C. (2021). Dark septate endophyte Falciphora oryzae-assisted alleviation of cadmium in rice. Journal of Hazardous Materials, 419, 126435. DOI
Tian, B., Zhu, M., Pei, Y., Ran, G., Shi, Y., & Ding, J. (2022). Climate warming alters the soil microbial association network and role of keystone taxa in determining wheat quality in the field. Agriculture, Ecosystem and Environment, 326, 107817. DOI
Tripathi, M., & Gaur, R. (2021). Bioactivity of soil microorganisms for agriculture development. In Microbes in Land Use Change Management (pp. 197–220). Elsevier. DOI
Ulbrich, T. C., Rivas-Ubach, A., Tiemann, L. K., Friesen, M. L., & Evans, S. E. (2022). Plant root exudates and rhizosphere bacterial communities shift with neighbor context. Soil Biology and Biochemistry, 172, 108753. DOI
van Der Putten, W. H. (2012). Climate Change, Aboveground-Belowground Interactions, and Species’ Range Shifts. Annual Review of Ecology, Evolution, and Systematics, 43(1), 365–383. DOI
van Der Putten, W. H., Bardgett, R. D., Bever, J. D., Bezemer, T. M., Casper, B. B., Fukami, T., Kardol, P., Klironomos, J. N., Kulmatiski, A., Schweitzer, J. A., Suding, K. N., Van De Voorde, T. F. J., & Wardle, D. A. (2013). Plant–soil feedbacks: The past, the present and future challenges. Journal of Ecology, 101(2), 265–276. DOI
Vorholt, J.A. (2012) Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12), 828–840. DOI
Wang, S., Zhao, S., Yang, B., Zhang, K., Fan, Y., Zhang, L., & Yang, X. (2022). The carbon and nitrogen stoichiometry in litter-soil-microbe continuum rather than plant diversity primarily shapes the changes in bacterial communities along a tropical forest restoration chronosequence. CATENA, 213, 106202. DOI
Wang, X., Zhang, Z., Yu, Z., Shen, G., Cheng, H., & Tao, S. (2020). Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau. Science of The Total Environment, 747(10), 141358. DOI
Wookey, P. A., Aerts, R., Bardgett, R. D., Baptist, F., Bråthen, K. A., Cornelissen, J. H. C., Gough, L., Hartley, I. P., Hopkins, D. W., Lavorel, S., & Shaver, G. R. (2009). Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology, 15(5), 1153–1172. DOI
Wu, H., Xiong, D., Xiao, L., Zhang, S., Yuan, Y., Su, Z., Zhang, B., & Yang, D. (2018). Effects of vegetation coverage and seasonal change on soil microbial biomass and community structure in the dry-hot valley region. Journal of Mountain Science, 15(7), 1546–1558. DOI
Xiang, Y., Wang, Y., Zhang, C., Shen, H., & Wang, D. (2018). Water level fluctuations influence microbial communities and mercury methylation in soils in the Three Gorges Reservoir, China. Journal of Environmental Sciences, 68, 206–217. DOI
Xue, M., Guo, Z., Gu, X., Gao, H., Weng, S., Zhou, J., Gu, D., Lu, H., & Zhou, X. (2020). Rare rather than abundant microbial communities drive the effects of long-term greenhouse cultivation on ecosystem functions in subtropical agricultural soils. Science of The Total Environment, 706, 136004. DOI
Zhou, Z., Wang, C., & Luo, Y. (2020). Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11(3072),1-10. DOI
DOI: http://doi.org/10.17503/agrivita.v46i1.4215
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.