Effects of Biocatharantine and Colchicine on Ploidy and Morphological Traits of Orange Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai ‘Citra Laga’)
Abstract
Keywords
Full Text:
PDFReferences
Aziz, I. R., Muthiadin, C., Hajrah, Alir, R. F., Suryafly, F. D., Amnah, A. Z., Hermawan, I. A., Mustami, M. K., Mahfut, & Upreti, B. M. (2021). Polyploidy Induction of Rutaceae through Bio-catharanthine Treatment. Biota: Biologi dan Pendidikan Biologi, 14(1), 1-10. https://biota.ac.id/index.php/jb/article/view/344
Billa, A. T., Lestari, S. S., Daryono, B. S., & Subiastuti, A. S. (2022). Bio-Catharantin Effects on Phenotypic Traits and Chromosome Number of Shallots (Allium cepa L. var. Ascalonicum ’Tajuk’). SABRAO Journal of Breeding and Genetics, 54(2), 350–358. https://doi.org/10.54910/sabrao2022.54.2.11
Chopra, V. L., & Swaminathan, M. S. (1960). Induction of polyploidy in watermelon. Proceedings / Indian Academy of Sciences, 51(2), 57–65. https://doi.org/10.1007/BF03050500
Cimen, B. (2020). Induction of Polyploidy in C35 Citrange through in Vitro Colchicine Treatments of Seed-Derived Explants. International Journal of Fruit Science, 20(S3), S1929–S1941. https://doi.org/10.1080/15538362.2020.1837051
Daley, J., & Wehner, T. C. (2021). Screening for bacterial fruit blotch resistance in watermelon fruit. Crop Science, 61(2), 1228–1240. https://doi.org/10.1002/csc2.20329
Dolezel, J., & Bartos, J. (2005). Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. Annals of Botany, 95(1), 99–110. https://doi.org/10.1093/aob/mci005
ECPGR. (2008). Minimum descriptors for Cucurbita spp., cucumber, melon and watermelon. ECPGR Working Group on Cucurbits. http://www.bioversityinternational.org/publications/pubfile.asp?ID_PUB=906
Fomicheva, M., & Domblides, E. (2023). Mastering DNA Content Estimation by Flow Cytometry as an Efficient Tool for Plant Breeding and Biodiversity Research. Methods and Protocols, 6, 18. https://doi.org/10.3390/mps6010018
Handayani, Rd. S., Yusuf, M., & Akmal, A. (2018). Potential Changes in Watermelon (Citrullus lannatus) Ploidy Treated by Colchicine. Journal of Tropical Horticulture, 1(1), 10-14. https://doi.org/10.33089/jthort.v1i1.6
Ilahy, R., Tlili, I., Siddiqui, M. W., Hdider, C., & Lenucci, M. S. (2019). Inside and Beyond Color: Comparative Overview of Functional Quality of Tomato and Watermelon Fruits. Frontiers in Plant Science, 10, 769. https://www.frontiersin.org/articles/10.3389/fpls.2019.00769
Islam, M. M., Deepo, D. M., Nasif, S. O., Siddique, A. B., Hassan, O., Siddique, A. B., & Paul, N. C. (2022). Cytogenetics and Consequences of Polyploidization on Different Biotic-Abiotic Stress Tolerance and the Potential Mechanisms Involved. Plants, 11(20), 2684. https://doi.org/10.3390/plants11202684
Jedrzejczyk, I., & Sliwinska, E. (2010). Leaves and Seeds as Materials for Flow Cytometric Estimation of the Genome Size of 11 Rosaceae Woody Species Containing DNA-Staining Inhibitors. Journal of Botany, 2010, 1–9. https://doi.org/10.1155/2010/930895
Jeloudar, N. I., Chamani, E., Shokouhian, A. A., & Zakaria, R. A. (2019). Induction and identification of polyploidy by colchicine treatment in Lilium regale. Cytologia, 84(3), 271–276. https://doi.org/10.1508/cytologia.84.271
Kurniawan, L., Laili, A. N., Anggaini, D. S., ‘Ain, S. Q., Wulandari, D. R., & Ulum, F. B. (2023). Poiploidy induction of Indonesian Black Rice Oryza sativa L. var. Cempo Ireng with Bio-catharantine. Life Science and Biotechnology, 1(2), 41-47. https://doi.org/10.19184/lsb.v1i2.43753
Madani, H., Escrich, A., Hosseini, B., Sanchez-Muñoz, R., Khojasteh, A., & Palazon, J. (2021). Effect of polyploidy induction on natural metabolite production in medicinal plants. Biomolecules, 11(6), 899. https://doi.org/10.3390/biom11060899
Magwede, K., van Wyk, B. E., & van Wyk, A. E. (2019). An inventory of Vhavenḓa useful plants. South African Journal of Botany, 122, 57–89. https://doi.org/10.1016/j.sajb.2017.12.013
Manzoor, A., Ahmad, T., Bashir, M. A., Hafiz, I. A., & Silvestri, C. (2019). Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants, 8(7), 194. https://doi.org/10.3390/plants8070194
Maoto, M. M., Beswa, D., & Jideani, A. I. O. (2019). Watermelon as a potential fruit snack. International Journal of Food Properties, 22(1), 355–370. https://doi.org/10.1080/10942912.2019.1584212
Menezes-Sá, T. S. A., Arrigoni-Blank, M. de F., da Costa, A. S., Santos-Serejo, J. de A., Blank, A. F., Soares, C. A., & Moura, G. M. S. (2019). Chromosome doubling in Cattleya tigrina A. Rich. Scientia Plena, 15(11), 110202. https://doi.org/10.14808/sci.plena.2019.110202
Mo, L., Chen, J., Lou, X., Xu, Q., Dong, R., Tong, Z., Huang, H., & Lin, E. (2020). Colchicine-induced polyploidy in Rhododendron fortunei Lindl. Plants, 9(4), 424. https://doi.org/10.3390/plants9040424
Muarifin, A. (2015). Phenotype and Ploidy Characterization of Peanut (Arachis hypogaea. ’Talam’) Product Bio-Catharantine Induction [Undergraduate thesis, Universitas Gadjah Mada]. Universitas Gadjah Mada. https://etd.repository.ugm.ac.id/penelitian/detail/91257
Ngwepe, R. M., Mashilo, J., & Shimelis, H. (2019). Progress in genetic improvement of citron watermelon (Citrullus lanatus var. Citroides): A review. Genetic Resources and Crop Evolution, 66(3), 735–758. https://doi.org/10.1007/s10722-018-0724-4
Nkoana, D. K., Mashilo, J., Shimelis, H., & Ngwepe, R. M. (2022). Nutritional, phytochemical compositions and natural therapeutic values of citron watermelon (Citrullus lanatus var. Citroides): A Review. South African Journal of Botany, 145, 65–77. https://doi.org/10.1016/j.sajb.2020.12.008
Nofriarno, N., Daryono, B. S., Saputri, A. P., & Indraningsih, E. (2018). Fenotipe and ploidi analysis of melon (Cucumis melo L.) Plants resulting from etanolic extraction of Periwinkle (Catharanthus roseus G. Don.) Leaves. Jurnal Biota, 4(2), 62–67. https://doi.org/10.19109/Biota.v4i2.2061
Ota, S., Fuchida, S., Yamaguchi, H., Yamagishi, T., Yamamoto, H., Koshikawa, H., & Kawachi, M. (2022). Propidium Iodide Staining and Flow Cytometry-Based Assessment of Heavy Metal Impact on Marine Phytoplankton. Cytologia, 87(2), 177–187. https://doi.org/10.1508/cytologia.87.177
Rohmah, D. I., Mulyani, M., Janah, L. N., Pancoro, A., Miftahudin, M., Wibowo, A. T., & Daryono, B. S. (2022). The effectiveness of bio-catharanthine on peanut (Arachis hypogea L.) Lurik cultivar: 7th International Conference on Biological Science (ICBS 2021), Yogyakarta, Indonesia. https://doi.org/10.2991/absr.k.220406.054
Ruiz, M., Oustric, J., Santini, J., & Morillon, R. (2020). Synthetic Polyploidy in Grafted Crops. Frontiers in Plant Science, 11, 540894. https://doi.org/10.3389/fpls.2020.540894
Shafura, N., Janah, L. N., Huda, M. S., & Daryono, B. S. (2022). Effectiveness of Bio-Catharantin Induction to Increase Red Spinach ( Alternanthera amoena Voss.) Production: 7th International Conference on Biological Science (ICBS 2021), Yogyakarta, Indonesia. https://doi.org/10.2991/absr.k.220406.074
Sjahril, R., Riadi, Muh., Saleh, I. R., Novitasari, Galla, E. A., Kasmiati, Trisnawaty, A. R., & Panga, N. J. (2023). Katokkon Pepper (Capsicum chinense Jacq.) Ploidy Determination by Morphological Characteristic and Flow Cytometry Analysis. AGRIVITA Journal of Agricultural Science, 45(2), 288–295. https://doi.org/10.17503/agrivita.v45i2.3633
Sobir, & Siregar, F. D. (2010). Budi Daya Semangka. Penebar Swadaya.
Sumardji & Suparno. (2017). The Effectiveness of Colchisin Giving on Watermelon Ploidization (Citrullus vulgaris Schard). International Journal of Applied Environmental Sciences, 12(11), 1951–1967. https://www.ripublication.com/ijaes17/ijaesv12n11_09.pdf
Tammu, R. M., Nuringtyas, T. R., & Daryono, B. S. (2021). Colchicine effects on the ploidy level and morphological characters of Katokkon pepper (Capsicum annuum L.) from North Toraja, Indonesia. Journal of Genetic Engineering and Biotechnology, 19(1), 31. https://doi.org/10.1186/s43141-021-00131-4
Tomaszewska, P., Pellny, T. K., Hernández, L. M., Mitchell, R. A. C., Castiblanco, V., de Vega, J. J., Schwarzacher, T., & Heslop-Harrison, P. (J. S.). (2021). Flow cytometry-based determination of ploidy from dried leaf specimens in genomically complex collections of the tropical forage grass Urochloa s. l. Genes, 12(7), 957. https://doi.org/10.3390/genes12070957
UPOV. (2013). Guidelines for The Conduct of Test for Distinctness, Uniformity and Stability. International Union for the Protection of New Varieties of Plants. https://www.upov.int/resource/en/dus_guidance.html
Wang, C., Qiao, A., Fang, X., Sun, L., Gao, P., Davis, A. R., Liu, S., & Luan, F. (2019). Fine Mapping of Lycopene Content and Flesh Color Related Gene and Development of Molecular Marker–Assisted Selection for Flesh Color in Watermelon (Citrullus lanatus). Frontiers in Plant Science, 10, 1240. https://doi.org/10.3389/fpls.2019.01240
Wardana, Slamet, A., Andarias, S. H., Bahrun, A. H., Mantja, K., & Darwis. (2019). Induction of Lili Hujan polyploid (Zephyranthes rosea Lindl.) with ethanolic extract of Tapak Dara leaf (Catharanthus roseus (L.) G. don.) to increase its economic value. IOP Conference Series: Earth and Environmental Science, 235, 012102. https://doi.org/10.1088/1755-1315/235/1/012102
Yavuz, D., Seymen, M., Süheri, S., Yavuz, N., Türkmen, Ö., & Kurtar, E. S. (2020). How do rootstocks of citron watermelon (Citrullus lanatus var. Citroides) affect the yield and quality of watermelon under deficit irrigation? Agricultural Water Management, 241, 106351. https://doi.org/10.1016/j.agwat.2020.106351
Yuan, P., Umer, M. J., He, N., Zhao, S., Lu, X., Zhu, H., Gong, C., Diao, W., Gebremeskel, H., Kuang, H., & Liu, W. (2021). Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus). BMC Plant Biology, 21(1), 203. https://doi.org/10.1186/s12870-021-02965-z
Zhang, N., Bao, Y., Xie, Z., Huang, X., Sun, Y., Feng, G., Zeng, H., Ren, J., Li, Y., Xiong, J., Chen, W., Yan, C., & Tang, M. (2019). Efficient characterization of tetraploid watermelon. Plants, 8(10), 419. https://doi.org/10.3390/plants8100419
DOI: http://doi.org/10.17503/agrivita.v46i3.4197
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.