Effects of Biocatharantine and Colchicine on Ploidy and Morphological Traits of Orange Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai ‘Citra Laga’)

Rizal Hermawan Setiyobudi, Adib Fakhruddin Yusuf, Budi Setiadi Daryono

Abstract


Massive production of watermelon is correlated with its nutritional value and attractive appearance. Intensification of plant breeding through polyploidization is of utmost importance in horticulture to improve productivity with desirable morphological traits. Colchicine is a common polyploid inducer with limitations, including effects on plant viability and high costs. Another anti-mitotic agent has been developed from Catharanthus roseus ethanolic extract, but the applicative provisions need further exploration. This research focuses on the efficacy and performance of biocatharantine and colchicine in improving ploidy levels with morphological evaluation on orange watermelon ‘Citra Laga’. Mature seeds were treated with 2% biocatharantine and 0.2% colchicine for 12 and 24 hours. Generally, major morphological traits are unchanged, with significant differences found only in the width of leaves and color characteristics. Flow cytometry is performed to assess the ploidy level of plant cells. Mixoploid plants containing 2C+4C+8C DNA are produced by colchicine, but the lowest germination rate is found to have a negative effect. Biocatharantine increases the peak intensities of tetraploid 4C DNA within mixoploid plants with minimum risk to plant viability. This research discovers the potential of biocatharantine as an anti-mitotic agent, with an evaluation of the octaploid success of orange watermelon ‘Citra Laga’ mediated by colchicine.

Keywords


Ethanolic extract; Flow cytometry; Germination rate; Morphological traits; Ploidy analysis

Full Text:

PDF

References


Aziz, I. R., Muthiadin, C., Hajrah, Alir, R. F., Suryafly, F. D., Amnah, A. Z., Hermawan, I. A., Mustami, M. K., Mahfut, & Upreti, B. M. (2021). Polyploidy Induction of Rutaceae through Bio-catharanthine Treatment. Biota: Biologi dan Pendidikan Biologi, 14(1), 1-10. https://biota.ac.id/index.php/jb/article/view/344

Billa, A. T., Lestari, S. S., Daryono, B. S., & Subiastuti, A. S. (2022). Bio-Catharantin Effects on Phenotypic Traits and Chromosome Number of Shallots (Allium cepa L. var. Ascalonicum ’Tajuk’). SABRAO Journal of Breeding and Genetics, 54(2), 350–358. https://doi.org/10.54910/sabrao2022.54.2.11

Chopra, V. L., & Swaminathan, M. S. (1960). Induction of polyploidy in watermelon. Proceedings / Indian Academy of Sciences, 51(2), 57–65. https://doi.org/10.1007/BF03050500

Cimen, B. (2020). Induction of Polyploidy in C35 Citrange through in Vitro Colchicine Treatments of Seed-Derived Explants. International Journal of Fruit Science, 20(S3), S1929–S1941. https://doi.org/10.1080/15538362.2020.1837051

Daley, J., & Wehner, T. C. (2021). Screening for bacterial fruit blotch resistance in watermelon fruit. Crop Science, 61(2), 1228–1240. https://doi.org/10.1002/csc2.20329

Dolezel, J., & Bartos, J. (2005). Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. Annals of Botany, 95(1), 99–110. https://doi.org/10.1093/aob/mci005

ECPGR. (2008). Minimum descriptors for Cucurbita spp., cucumber, melon and watermelon. ECPGR Working Group on Cucurbits. http://www.bioversityinternational.org/publications/pubfile.asp?ID_PUB=906

Fomicheva, M., & Domblides, E. (2023). Mastering DNA Content Estimation by Flow Cytometry as an Efficient Tool for Plant Breeding and Biodiversity Research. Methods and Protocols, 6, 18. https://doi.org/10.3390/mps6010018

Handayani, Rd. S., Yusuf, M., & Akmal, A. (2018). Potential Changes in Watermelon (Citrullus lannatus) Ploidy Treated by Colchicine. Journal of Tropical Horticulture, 1(1), 10-14. https://doi.org/10.33089/jthort.v1i1.6

Ilahy, R., Tlili, I., Siddiqui, M. W., Hdider, C., & Lenucci, M. S. (2019). Inside and Beyond Color: Comparative Overview of Functional Quality of Tomato and Watermelon Fruits. Frontiers in Plant Science, 10, 769. https://www.frontiersin.org/articles/10.3389/fpls.2019.00769

Islam, M. M., Deepo, D. M., Nasif, S. O., Siddique, A. B., Hassan, O., Siddique, A. B., & Paul, N. C. (2022). Cytogenetics and Consequences of Polyploidization on Different Biotic-Abiotic Stress Tolerance and the Potential Mechanisms Involved. Plants, 11(20), 2684. https://doi.org/10.3390/plants11202684

Jedrzejczyk, I., & Sliwinska, E. (2010). Leaves and Seeds as Materials for Flow Cytometric Estimation of the Genome Size of 11 Rosaceae Woody Species Containing DNA-Staining Inhibitors. Journal of Botany, 2010, 1–9. https://doi.org/10.1155/2010/930895

Jeloudar, N. I., Chamani, E., Shokouhian, A. A., & Zakaria, R. A. (2019). Induction and identification of polyploidy by colchicine treatment in Lilium regale. Cytologia, 84(3), 271–276. https://doi.org/10.1508/cytologia.84.271

Kurniawan, L., Laili, A. N., Anggaini, D. S., ‘Ain, S. Q., Wulandari, D. R., & Ulum, F. B. (2023). Poiploidy induction of Indonesian Black Rice Oryza sativa L. var. Cempo Ireng with Bio-catharantine. Life Science and Biotechnology, 1(2), 41-47. https://doi.org/10.19184/lsb.v1i2.43753

Madani, H., Escrich, A., Hosseini, B., Sanchez-Muñoz, R., Khojasteh, A., & Palazon, J. (2021). Effect of polyploidy induction on natural metabolite production in medicinal plants. Biomolecules, 11(6), 899. https://doi.org/10.3390/biom11060899

Magwede, K., van Wyk, B. E., & van Wyk, A. E. (2019). An inventory of Vhavenḓa useful plants. South African Journal of Botany, 122, 57–89. https://doi.org/10.1016/j.sajb.2017.12.013

Manzoor, A., Ahmad, T., Bashir, M. A., Hafiz, I. A., & Silvestri, C. (2019). Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants, 8(7), 194. https://doi.org/10.3390/plants8070194

Maoto, M. M., Beswa, D., & Jideani, A. I. O. (2019). Watermelon as a potential fruit snack. International Journal of Food Properties, 22(1), 355–370. https://doi.org/10.1080/10942912.2019.1584212

Menezes-Sá, T. S. A., Arrigoni-Blank, M. de F., da Costa, A. S., Santos-Serejo, J. de A., Blank, A. F., Soares, C. A., & Moura, G. M. S. (2019). Chromosome doubling in Cattleya tigrina A. Rich. Scientia Plena, 15(11), 110202. https://doi.org/10.14808/sci.plena.2019.110202

Mo, L., Chen, J., Lou, X., Xu, Q., Dong, R., Tong, Z., Huang, H., & Lin, E. (2020). Colchicine-induced polyploidy in Rhododendron fortunei Lindl. Plants, 9(4), 424. https://doi.org/10.3390/plants9040424

Muarifin, A. (2015). Phenotype and Ploidy Characterization of Peanut (Arachis hypogaea. ’Talam’) Product Bio-Catharantine Induction [Undergraduate thesis, Universitas Gadjah Mada]. Universitas Gadjah Mada. https://etd.repository.ugm.ac.id/penelitian/detail/91257

Ngwepe, R. M., Mashilo, J., & Shimelis, H. (2019). Progress in genetic improvement of citron watermelon (Citrullus lanatus var. Citroides): A review. Genetic Resources and Crop Evolution, 66(3), 735–758. https://doi.org/10.1007/s10722-018-0724-4

Nkoana, D. K., Mashilo, J., Shimelis, H., & Ngwepe, R. M. (2022). Nutritional, phytochemical compositions and natural therapeutic values of citron watermelon (Citrullus lanatus var. Citroides): A Review. South African Journal of Botany, 145, 65–77. https://doi.org/10.1016/j.sajb.2020.12.008

Nofriarno, N., Daryono, B. S., Saputri, A. P., & Indraningsih, E. (2018). Fenotipe and ploidi analysis of melon (Cucumis melo L.) Plants resulting from etanolic extraction of Periwinkle (Catharanthus roseus G. Don.) Leaves. Jurnal Biota, 4(2), 62–67. https://doi.org/10.19109/Biota.v4i2.2061

Ota, S., Fuchida, S., Yamaguchi, H., Yamagishi, T., Yamamoto, H., Koshikawa, H., & Kawachi, M. (2022). Propidium Iodide Staining and Flow Cytometry-Based Assessment of Heavy Metal Impact on Marine Phytoplankton. Cytologia, 87(2), 177–187. https://doi.org/10.1508/cytologia.87.177

Rohmah, D. I., Mulyani, M., Janah, L. N., Pancoro, A., Miftahudin, M., Wibowo, A. T., & Daryono, B. S. (2022). The effectiveness of bio-catharanthine on peanut (Arachis hypogea L.) Lurik cultivar: 7th International Conference on Biological Science (ICBS 2021), Yogyakarta, Indonesia. https://doi.org/10.2991/absr.k.220406.054

Ruiz, M., Oustric, J., Santini, J., & Morillon, R. (2020). Synthetic Polyploidy in Grafted Crops. Frontiers in Plant Science, 11, 540894. https://doi.org/10.3389/fpls.2020.540894

Shafura, N., Janah, L. N., Huda, M. S., & Daryono, B. S. (2022). Effectiveness of Bio-Catharantin Induction to Increase Red Spinach ( Alternanthera amoena Voss.) Production: 7th International Conference on Biological Science (ICBS 2021), Yogyakarta, Indonesia. https://doi.org/10.2991/absr.k.220406.074

Sjahril, R., Riadi, Muh., Saleh, I. R., Novitasari, Galla, E. A., Kasmiati, Trisnawaty, A. R., & Panga, N. J. (2023). Katokkon Pepper (Capsicum chinense Jacq.) Ploidy Determination by Morphological Characteristic and Flow Cytometry Analysis. AGRIVITA Journal of Agricultural Science, 45(2), 288–295. https://doi.org/10.17503/agrivita.v45i2.3633

Sobir, & Siregar, F. D. (2010). Budi Daya Semangka. Penebar Swadaya.

Sumardji & Suparno. (2017). The Effectiveness of Colchisin Giving on Watermelon Ploidization (Citrullus vulgaris Schard). International Journal of Applied Environmental Sciences, 12(11), 1951–1967. https://www.ripublication.com/ijaes17/ijaesv12n11_09.pdf

Tammu, R. M., Nuringtyas, T. R., & Daryono, B. S. (2021). Colchicine effects on the ploidy level and morphological characters of Katokkon pepper (Capsicum annuum L.) from North Toraja, Indonesia. Journal of Genetic Engineering and Biotechnology, 19(1), 31. https://doi.org/10.1186/s43141-021-00131-4

Tomaszewska, P., Pellny, T. K., Hernández, L. M., Mitchell, R. A. C., Castiblanco, V., de Vega, J. J., Schwarzacher, T., & Heslop-Harrison, P. (J. S.). (2021). Flow cytometry-based determination of ploidy from dried leaf specimens in genomically complex collections of the tropical forage grass Urochloa s. l. Genes, 12(7), 957. https://doi.org/10.3390/genes12070957

UPOV. (2013). Guidelines for The Conduct of Test for Distinctness, Uniformity and Stability. International Union for the Protection of New Varieties of Plants. https://www.upov.int/resource/en/dus_guidance.html

Wang, C., Qiao, A., Fang, X., Sun, L., Gao, P., Davis, A. R., Liu, S., & Luan, F. (2019). Fine Mapping of Lycopene Content and Flesh Color Related Gene and Development of Molecular Marker–Assisted Selection for Flesh Color in Watermelon (Citrullus lanatus). Frontiers in Plant Science, 10, 1240. https://doi.org/10.3389/fpls.2019.01240

Wardana, Slamet, A., Andarias, S. H., Bahrun, A. H., Mantja, K., & Darwis. (2019). Induction of Lili Hujan polyploid (Zephyranthes rosea Lindl.) with ethanolic extract of Tapak Dara leaf (Catharanthus roseus (L.) G. don.) to increase its economic value. IOP Conference Series: Earth and Environmental Science, 235, 012102. https://doi.org/10.1088/1755-1315/235/1/012102

Yavuz, D., Seymen, M., Süheri, S., Yavuz, N., Türkmen, Ö., & Kurtar, E. S. (2020). How do rootstocks of citron watermelon (Citrullus lanatus var. Citroides) affect the yield and quality of watermelon under deficit irrigation? Agricultural Water Management, 241, 106351. https://doi.org/10.1016/j.agwat.2020.106351

Yuan, P., Umer, M. J., He, N., Zhao, S., Lu, X., Zhu, H., Gong, C., Diao, W., Gebremeskel, H., Kuang, H., & Liu, W. (2021). Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus). BMC Plant Biology, 21(1), 203. https://doi.org/10.1186/s12870-021-02965-z

Zhang, N., Bao, Y., Xie, Z., Huang, X., Sun, Y., Feng, G., Zeng, H., Ren, J., Li, Y., Xiong, J., Chen, W., Yan, C., & Tang, M. (2019). Efficient characterization of tetraploid watermelon. Plants, 8(10), 419. https://doi.org/10.3390/plants8100419




DOI: http://doi.org/10.17503/agrivita.v46i3.4197

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.