Exogenous Application of Calcium, α-Naphthaleneacetic Acid and 1Methylcyclopropene Improved Fruit Growth and Oil Yield of Oil Palm (Elaeis guineensis Jacq.) Grown on Ultisol

Didy Sopandie, Agus Nur Hidayah, Sudirman Yahya

Abstract


Soil acidity is one of the main factors limiting the growth and sustainable production of oil palm in Indonesia. The aim of this study was to evaluate the effect of various exogenous compounds on improving fruit growth and oil yield of palm oil grown on Ultisol. The experiment employed three treatments which were arranged in a Randomized Complete Block Design (RCBD) with three replications. The treatments were: 1-MCP (0, 100, 200, and 300 ppm), CaCl2 (0 and 50 ppm) and NAA (0 and 200 ppm). Application of Ca2+, NAA and 1-MCP either single or in combination improved fruit growth and oil yield by increasing almost all variables, except the number of bunches, bunch weight and fruit set. The 100 ppm 1-MCP + 50 ppm Ca2+ + 200 ppm NAA treatments showed the highest oil-to-dry mesocarp content. To get the highest oil to bunch (OB), the combination of 100 ppm 1-MCP + 200 ppm NAA; 50 ppm Ca2+ + 200 ppm NAA, and a single treatment of 50 ppm Ca2+ were very promising to be utilized.

Keywords


1-Methylcyclopropene (1-MCP); α-Naphthalene acetic acid; Calcium; Fruit weight; Oil extraction rate

Full Text:

PDF

References


Abdul Wahab, N., Lim, C. K., Ramli, Z., Rosli, R., Ahmad Maliki, F., Abd Manaf, M. A., Roberts, J., & Massawe, F. (2020). Oil palm ethylene receptor gene family: Identification, characterisation and expression analysis. Journal of Oil Palm Research, 32(3), 377-393. DOI

Basuchaudhuri, P. (2016). 1-Naphthaleneacetic acid in rice cultivation. Current Science, 110(1), 52–56. DOI

BPS. (2022). Indonesian Palm Oil Statistics 2021. Badan Pusat Statistik. website

BPS Penajam Paser Utara. (2022). Kabupaten Penajam Paser Utara dalam Angka 2022 (Penajam Paser Utara Regency in Figure). Badan Pusat Statistik Penajam Paser Utara.(Indonesian). PDF

Brumos, J. (2021). Gene regulation in climacteric fruit ripening. Current Opinion in Plant Biology, 63, 102042. DOI

Chan, K.W., Corley, R.H.V., & Seth, A.K. (1972). Effects of growth regulators on fruit abscission in oil palm, Elaeis guineensis. Annals of Applied Biology, 71(3), 243–249. DOI

Chen, C., Wu, X.-M., Pan, L., Yang, Y.-T., Dai, H.-B., Hua, B., Miao, M.-M., & Zhang, Z.-P. (2022). Effects of exogenous α-naphthaleneacetic acid and 24-epibrassinolide on fruit size and assimilate metabolism-related sugars and enzyme activities in Giant Pumpkin. International Journal of Molecular Sciences, 23(21), 13157. DOI

Corley, R. H. V., & Tinker, P. B. (2015). The Oil Palm (1st ed.). Wiley. DOI

Directorate General of Plantation, I. (2021). National Leading Plantation Statistics 2019-2021. Kementrian Pertanian Republik Indonesia. 1046p. website

Herrera-Ubaldo, H. (2022). Big red: dissecting the role of ethylene in tomato fruit development and ripening. The Plant Cell, 34(9), 3158–3159. DOI

Hidayah, A.N. (2020). Peran Senyawa Eksogen terhadap Induksi Toleransi Cekaman Alumunium dan Peningkatan Produktivitas dan Rendemen pada Kelapa Sawit (Elaeis guineensis Jacq.). (The Role of Exogenous Compounds in Inducing Aluminum Stress Tolerance and Increasing Productivity and Yield in Oil Palm (Elaeis guineensis Jacq.). [Master Thesis]. Institut Pertanian Bogor. 122p. website

Hidayah, A. N., Yahya, S., & Sopandie, D. (2020). The tolerance of oil palm (Elaeis guineensis) seedlings to Al stress is enhanced by citric acid and natural peat water. Biodiversitas Journal of Biological Diversity, 21(10), 4850-4858. DOI

Khoiriyah, A., Putra, E. T. S., & Yudono, P. (2016). Proline activity and growth of oil palm affected by aluminum toxicity and silica as ameliorant. Ilmu Pertanian (Agricultural Science), 1(1), 007. DOI

Kim, J.S., Ezura, K., Lee, J., Kojima, M., Takebayashi, Y., Sakakibara, H., Ariizumi, T., & Ezura, H. (2020). The inhibition of SlIAA9 mimics an increase in endogenous auxin and mediates changes in auxin and gibberellin signalling during parthenocarpic fruit development in tomato. Journal Plant Physiology 252, 153238. DOI

Mandal, P. K., & Babu, M. K. (2008). Bunch Analysis of Oil Palm. National Research Centre on Oil Palm, Pedavegi. PDF

Marschner, P. (2012). Mineral Nutrition of Higher Plants (Third Edition). Academic Pr. 651p. PDF

Milić, B., Tarlanović, J., Keserović, Z., Magazin, N., Miodragović, M., & Popara, G. (2018). Bioregulators can improve fruit size, yield and plant growth of northern highbush blueberry (Vaccinium corymbosum L.). Scientia Horticulturae, 235, 214–220. DOI

Nualwijit, N., Lerslerwong, L., & Imsabai, W. (2013). Ripening delay and reduction of free fatty acids of oil palm fruit in response to 1-methylcyclopropene. Acta Horticulturae, 1011, 343–349. DOI

Nurniwalis, A. W., Zubaidah, R., Siti Nor Akmar, A., Suhaimi, N., & Massawe, F. (2018). Isolation and characerisation of an ethylene receptor (ERS-Type) from oil palm (Elaeis guineensis Jacq.) mesocarp. Journal of Oil Palm Research, 30(2), 251–264. DOI

Purnama, T. (2016). Optimizing the dose of calcium and boron fertilizers to control yellow sap in mangosteen fruit. Informatika Pertanian, 25(1), 29-40. DOI

Putra, E. T. S., Purwanto, B. H., Wulandari, C., & Alam, T. (2021). Metabolic activities of eight oil palm progenies grown under aluminum toxicity. Biodiversitas Journal of Biological Diversity, 22(8), 3146-3155. DOI

Rachmah, C., Nawawi, M., & Koesriharti. (2017). Pengaruh aplikasi pupuk kalsium (CaCO3) dan giberelin terhadap pertumbuhan, hasil, dan kualitas buah pada tanaman tomat (Lycopersicon esculentum mill.) (Effect of application of calcium (CaCO3) and gibberellin fertilizers on growth, yield, and fruit quality of tomato (Lycopersicon esculentum mill.). Jurnal Produksi Tanaman, 5(3), 515–520. website

Rahman, R., & Upadhyaya, H. (2021). Aluminium Toxicity and Its Tolerance in Plant: A Review. Journal of Plant Biology, 64(2), 101–121. DOI

Rath, A., Petracek, P., Venburg, G. D., Shafer, W. E., & Acuna, M. G. V. (2017). Methods for increasing oil palm yield (Patent No. 9,538,749 B2). PDF

Ratnasari, S., Putra, E. T. S., & Indradewa, D. (2017). Analysis of The Growth of Oil Palm (Elaeis guineensis Jacq.) Exposed by Aluminum Toxicity and Silica as an Amelioration. Ilmu Pertanian (Agricultural Science), 2(1), 015-019. DOI

Romero, H. M., Daza, E., Ayala-Díaz, I., & Ruiz-Romero, R. (2021). High-Oleic Palm Oil (HOPO) production from parthenocarpic fruits in oil palm interspecific hybrids using naphthalene acetic acid. Agronomy, 11(2), 290. DOI

Sangwiroonthon, K., Sanputawong, S., Preecha, C., & Nakorn, S. . (2017). Effects of NAA and GA3 at different concentrations on growth and quality of oil palm bunch and fruit (Elaeis guineensis Jacq.). International Journal of Agricultural Technology, 13(7.3), 2393–2402. PDF

Shamshuddin, J., Elisa Azura, A., Shazana, M. A. R. S., Fauziah, C. I., Panhwar, Q. A., & Naher, U. A. (2014). Properties and Management of Acid Sulfate Soils in Southeast Asia for Sustainable Cultivation of Rice, Oil Palm, and Cocoa. In Advances in Agronomy (Vol. 124, pp. 91–142). Elsevier. DOI

Shinozaki, Y., Beauvoit, B. P., Takahara, M., Hao, S., Ezura, K., Andrieu, M.-H., Nishida, K., Mori, K., Suzuki, Y., Kuhara, S., Enomoto, H., Kusano, M., Fukushima, A., Mori, T., Kojima, M., Kobayashi, M., Sakakibara, H., Saito, K., Ohtani, Y., … Ariizumi, T. (2020). Fruit setting rewires central metabolism via gibberellin cascades. Proceedings of the National Academy of Sciences, 117(38), 23970–23981. DOI

Singh, S. K., Kumar, A., Beer, K., P. Singh, V., & K. Patel, S. (2018). Effect of naphthalene acetic acid (NAA) and gibberellic acid (GA3) on growth and fruit quality of tomato (Lycopersicon esculentum Mill.). International Journal of Current Microbiology and Applied Sciences, 7(03), 306–311. DOI

Somyong, S., Walayaporn, K., Jomchai, N., Naktang, C., Yodyingyong, T., Phumichai, C., Pootakham, W., & Tangphatsornruang, S. (2018). Transcriptome analysis of oil palm inflorescences revealed candidate genes for an auxin signaling pathway involved in parthenocarpy. PeerJ, 6, e5975. DOI

Sotelo-Silveira, M., Marsch-Martínez, N., de Folter, S. (2014). Unraveling the signal scenario of fruit set. Planta 239(6), 1147–1158. DOI

Supena, N., Soegianto, A., & Soetopo, L. (2014). Response of oil palm varieties to alumunium stress. Journal of Tropical Life Science, 4(1), 51–60. DOI

Taiz, L., Zeiger, E., Moller, I. ., & Murphy, A. (2015). Plant Physiology and Development (6th ed.). Sinauer Associates. 623p. , DOI

Tanari, Y., Efendi, D., Poerwanto, R., Sopandie, D., & Suketi, K. (2018). Application of calcium and NAA to control yellow sap of mangosteen fruit (Garcinia mangostana L). Jurnal Hortikultura Indonesia, 9(1), 10–18. DOI

Thomas, R.L., Seth, A.K., Chan, K.W., & Ooi, S.C. (1973). Induced parthenocarpy in the oil-palm. Annals of Botany, 37(3), 447–452. DOI

Tomala, K., Grzęda, M., Guzek, D., Głąbska, D., & Gutkowska, K. (2020). Analysis of possibility to apply preharvest 1-Methylcyclopropene (1-MCP) treatment to delay harvesting of Red Jonaprince Apples. Sustainability, 12(11), 4575. DOI

Tranbarger, T. J., Dussert, S., Joët, T., Argout, X., Summo, M., Champion, A., Cros, D., Omore, A., Nouy, B., & Morcillo, F. (2011). Regulatory Mechanisms Underlying Oil Palm Fruit Mesocarp Maturation, Ripening, and Functional Specialization in Lipid and Carotenoid Metabolism. Plant Physiology, 156(2), 564–584. DOI

Utami, T., Putra, E. T. S., & Tohari, T. (2019). Root Morphology and Growth Response of Oil Palm (Elaeis guineensis Jacq) Hybrid to Al Toxicity at Nursery. Ilmu Pertanian (Agricultural Science), 4(3), 140. DOI

Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57–77. DOI




DOI: http://doi.org/10.17503/agrivita.v46i1.4115

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.