Performance and Virulence of the Entomopathogenic Fungi Beauveria bassiana Grown in Media Derived from Biodegradable Agricultural Wastes Enriched with Cricket Powder
Abstract
Entomopathogenic fungi (EPF) can be an eco-friendly alternative to control pests. To produce large-scale EPF requires underused economical substrates containing high carbon and nitrogen; hence the production could be cost-effective. This study investigates the effects of organic agricultural waste, i.e., rice bran, rice husks, tea dregs, and wheat bran enriched with cricket powder as culture media on the mycelial growth, sporulation, and conidia viability of Beauveria bassiana and the fungal pathogenicity towards Spodoptera litura larvae. For each type of medium, five independent cultures of B. bassiana are treated as replications. B. bassiana grown on a PDA medium is treated as a control. This study shows that rice bran enriched with cricket powder became the most suitable waste medium to support the mass production of virulent B. bassiana. Therefore, rice bran media enriched with cricket powder can be used as an appropriate medium for the mass production of B. bassiana.
Keywords
Full Text:
PDFReferences
Afandhi, A., Choliq, F. A., Fernando, I., Marpaung, Y. M. A. N., & Setiawan, Y. (2022). Occurrence of soil-inhabiting entomopathogenic fungi within a conventional and organic farm and their virulence against Spodoptera litura. Biodiversitas Journal of Biological Diversity, 23(2). DOI
Afandhi, A., Pratiwi, V. R., Hadi, M. S., Setiawan, Y., & Puspitarini, R. D. (2020). Suitable combination between Beauveria bassiana (Balsamo) Vuillemin and four plant leaf extracts to control Spodoptera litura (Fabricius). AGRIVITA Journal of Agricultural Science, 42(2). DOI
Bolzonella, C., Lucchetta, M., Teo, G., Boatto, V., & Zanella, A. (2019). Is there a way to rate insecticides that is less detrimental to human and environmental health? Global Ecology and Conservation, 20, e00699. DOI
BPS. (2022). Luas panen dan produksi padi di Indonesia 2021. Badan Pusat Statistik. website
Camara, I., Cao, K., Sangbaramou, R., Wu, P., Shi, W., & Tan, S. (2022). Screening of Beauveria bassiana (Bals.) (Hypocreales: Cordycipitaceae) strains against Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae) and conditions for large-scale production. Egyptian Journal of Biological Pest Control, 32(1), 85. DOI
Cui, Y., Li, J., Deng, D., Lu, H., Tian, Z., Liu, Z., & Ma, X. (2021). Solid-state fermentation by Aspergillus niger and Trichoderma koningii improves the quality of tea dregs for use as feed additives. Plos One, 16(11), e0260045. DOI
Fang, W., Feng, J., Fan, Y., Zhang, Y., Bidochka, M. J., Leger, R. J. St., & Pei, Y. (2009). Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. Journal of Invertebrate Pathology, 102(2), 155–159. DOI
Faria, M., Lopes, R. B., Souza, D. A., & Wraight, S. P. (2015). Conidial vigor vs. viability as predictors of virulence of entomopathogenic fungi. Journal of Invertebrate Pathology, 125, 68–72. DOI
Harith-Fadzilah, N., Abd Ghani, I., & Hassan, M. (2021). Omics-based approach in characterizing mechanisms of entomopathogenic fungi pathogenicity: A case example of Beauveria bassiana. Journal of King Saud University - Science, 33(2), 101332. DOI
Indriyanti, D. R., Putri, R. I. P., Widiyaningrum, P., & Herlina, L. (2017). Density, viability conidia and symptomps of Metarihizium anisopliae infection on Oryctes rhinoceros larvae. Journal of Physics: Conference Series, 824, 012058. DOI
Iskandarov, U. S., Guzalova, A. G., & Davranov, K. D. (2006). Effects of nutrient medium composition and temperature on the germination of conidia and the entomopathogenic activity of the fungi Beauveria bassiana and Metarhizium anisopliae. Applied Biochemistry and Microbiology, 42(1), 72–76. DOI
Jaronski, S. T. (2023). Mass production of entomopathogenic fungi—state of the art. In J. A. Morales-Ramos, M. G. Rojas, & D. I. Shapiro-Ilan (Eds.), Mass production of beneficial organisms (Second Edi, pp. 317–357). Elsevier. DOI
Kim, J. S., Lee, S. J., Skinner, M., & Parker, B. L. (2014). A novel approach: Beauveria bassiana granules applied to nursery soil for management of rice water weevils in paddy fields. Pest Management Science, 70(8), 1186–1191. DOI
Litwin, A., Nowak, M., & Różalska, S. (2020). Entomopathogenic fungi: unconventional applications. Reviews in Environmental Science and Bio/Technology, 19(1), 23–42. DOI
Lopez-Perez, M., Rodriguez-Gomez, D., & Loera, O. (2015). Production of conidia of Beauveria bassiana in solid-state culture: current status and future perspectives. Critical Reviews in Biotechnology, 35(3), 334–341. DOI
Mallebrera, B., Prosperini, A., Font, G., & Ruiz, M. J. (2018). In vitro mechanisms of Beauvericin toxicity: A review. Food and Chemical Toxicology, 111, 537–545. DOI
McKinnon, A. C., Saari, S., Moran-Diez, M. E., Meyling, N. V., Raad, M., & Glare, T. R. (2017). Beauveria bassiana as an endophyte: A critical review on associated methodology and biocontrol potential. BioControl, 62(1), 1–17. DOI
Mishra, S., Kumar, P., & Malik, A. (2016). Suitability of agricultural by-products as production medium for spore production by Beauveria bassiana HQ917687. International Journal of Recycling of Organic Waste in Agriculture, 5(2), 179–184. DOI
Mondal, S., Baksi, S., Koris, A., & Vatai, G. (2016). Journey of enzymes in entomopathogenic fungi. Pacific Science Review A: Natural Science and Engineering, 18(2), 85–99. DOI
Mora, M. A. E., Castilho, A. M. C., & Fraga, M. E. (2018). Classification and infection mechanism of entomopathogenic fungi. Arquivos Do Instituto Biológico, 84(0), 1–10. DOI
Paiva-Guimarães, A. G. L., Freire, K. R. L., Santos, S. F. M., Almeida, A. F., & Sousa, A. C. B. (2020). Alternative substrates for conidiogenesis of the entomopathogenic fungus Beauveria bassiana (Bals) Vuillemin (Deuteromycotina: Hyphomycetes). Brazilian Journal of Biology, 80(1), 133–141. DOI
Palma-Guerrero, J., Larriba, E., Güerri-Agulló, B., Jansson, H.-B., Salinas, J., & Lopez-Llorca, L. V. (2010). Chitosan increases conidiation in fungal pathogens of invertebrates. Applied Microbiology and Biotechnology, 87(6), 2237–2245. DOI
Pelizza, S. A., Elíades, L. A., Saparrat, M. C. N., Cabello, M. N., Scorsetti, A. C., & Lange, C. E. (2012). Screening of Argentine native fungal strains for biocontrol of the grasshopper Tropidacris collaris: Relationship between fungal pathogenicity and chitinolytic enzyme activity. World Journal of Microbiology and Biotechnology, 28(4), 1359–1366. DOI
Prückler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E., & Kneifel, W. (2014). Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT - Food Science and Technology, 56(2), 211–221. DOI
Puspitarini, R. D., Afandhi, A., & Fernando, I. (2021). Evaluation of indigenous fungal entomopathogens and aqueous leaf extract of Annona muricata against Polyphagotarsonemus latus infesting Jatropha curcas in Indonesia. Biodiversitas Journal of Biological Diversity, 22(7). DOI
Puspitarini, R. D., Fernando, I., Sianturi, Y. P. P. A., & Rachmawati, R. (2022). Compatibility of Jatropha curcas seed extract and entomopathogenic fungus Akanthomyces lecanii against the citrus red mite Panonychus citri. Biocontrol Science and Technology, 32(3), 299–313. DOI
Puspitarini, R. D., Fernando, I., Widjayanti, T., & Ihsan, M. (2022). Compatibility of the aqueous leaf extract of Mimosa pudica and the entomoacaropathogenic fungus Beauveria bassiana in controlling the broad mite Polyphagotarsonemus latus (Acari: Tarsonemidae). Persian Journal of Acarology, 11(1), 115–131. DOI
Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657. DOI
Sadad, A., Asri, M. T., & Ratnasari, E. (2014). Pemanfaatan bekatul padi, bekatul jagung, dan kulit ari biji kedelai sebagai media pertumbuhan miselium cendawan Metarhizium anisopliae. LenteraBio, 3 (2) : 136-140.
Safavi, S. A., Shah, F. A., Pakdel, A. K., Reza Rasoulian, G., Bandani, A. R., & Butt, T. M. (2007). Effect of nutrition on growth and virulence of the entomopathogenic fungus Beauveria bassiana. FEMS Microbiology Letters, 270(1), 116–123. DOI
Sari, D. C. A. F., Oetari, A., & Sjamsuridzal, W. (2018). Cricket powder in the growth medium provides nutrition for the insect-pathogenic fungus Metarhizium majus UICC 295. 020150. DOI
Smith, R. J., & Grula, E. A. (1981). Nutritional requirements for conidial germination and hyphal growth of Beauveria bassiana. Journal of Invertebrate Pathology, 37(3), 222–230. DOI
Srikanth, J., & Santhalakshmi, G. (2012). Effect of media additives on the production of Beauveria brongniartii, an entomopathogenic fungus of Holotrichia serrata. Sugar Tech, 14(3), 284–290. DOI
Vidhate, R. P., Dawkar, V. V., Punekar, S. A., & Giri, A. P. (2023). Genomic determinants of entomopathogenic fungi and their involvement in pathogenesis. Microbial Ecology, 85(1), 49–60. DOI
Wang, C., & Wang, S. (2017). Insect pathogenic fungi: Genomics, molecular interactions, and genetic improvements. Annual Review of Entomology, 62(1), 73–90. DOI
Włóka, E., Boguś, M. I., Wrońska, A. K., Drozdowski, M., Kaczmarek, A., Sobich, J., & Gołębiowski, M. (2022). Insect cuticular compounds affect Conidiobolus coronatus (Entomopthorales) sporulation and the activity of enzymes involved in fungal infection. Scientific Reports, 12(1), 13641. DOI
DOI: http://doi.org/10.17503/agrivita.v45i2.4113
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.