Corn (Zea mays L.) Response of Palm Oil Mill Effluent Plus Zeolite, and Water Availability in Potential Acid Sulphate Soil

Ida Nursanti, Yuza Defitri

Abstract


Potential use of acid sulfate soils in agriculture is faced by low pH and the presence of a pyrite layer especially in dry conditions. In order for potential acid sulfate soils to support corn growth during the dry season, technological input is needed to improve soil fertility and overcome water availability by organic fertilizer palm oil mill effluent (POME) plus zeolite. The study used a Split Plot Design with two treatment factors. The treatment factors consisted of plots of water availability: C1 = 100%, C2 = 75%, C3 = 50%, C4 = 25%. POME subplot factor: L0 = No POME, L1 = Secondary Anaerobic POME  (zeolite 0%) dose of 1000 ml, L2 = POME Acidification Pool (zeolite 10%) dose of 1000 ml. Availability of water and the provision of POME plus zeolite affect pH, organic-C, total-N, P-Bray I, and soil CEC. In terms of plant growth, both treatments also influence canopy dry weight, seed weight, N content, P and proline leaf corn. Palm oil mill effluent acidification pool plus zeolite 10% dose of 1000 ml increases the adaptability of plants to water shortages and the fertility of potential acid sulfate soils, and the growth and production of corn.


Keywords


Corn; POME plus Zeolite; Potential acid sulfate soil; Water Availability

Full Text:

PDF

References


Berny Mier y Teran, J. C., Konzen, E. R., Palkovic, A., Tsai, S. M., Rao, I. M., Beebe, S., & Gepts, P. (2019). Effect of drought stress on the genetic architecture of photosynthate allocation and remobilization in pods of common bean (Phaseolus vulgaris L.), a key species for food security. BMC Plant Biology, 19, 171. https://doi.org/10.1186/s12870-019-1774-2

Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1–2), 3–41. https://doi.org/10.1007/s11104-014-2131-8

Dien, D. C., Mochizuki, T., & Yamakawa, T. (2019). Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Production Science, 22(4), 530–545. https://doi.org/10.1080/1343943X.2019.1647787

Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought Stress in Plants: An Overview. In R. Aroca (Ed.), Plant Responses to Drought Stress (pp. 1–33). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_1

Fitzpatrick, R. W., Mosley, L. M., Raven, M. D., & Shand, P. (2017). Schwertmannite formation and properties in acidic drain environments following exposure and oxidation of acid sulfate soils in irrigation areas during extreme drought. Geoderma, 308, 235–251. https://doi.org/10.1016/j.geoderma.2017.08.012

Hailegnaw, N. S., Mercl, F., Pračke, K., Száková, J., & Tlustoš, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19(5), 2405–2416. https://doi.org/10.1007/s11368-019-02264-z

Hanaka, A., Ozimek, E., Reszczyńska, E., Jaroszuk-Ściseł, J., & Stolarz, M. (2021). Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. Horticulturae, 7(10), 390. https://doi.org/10.3390/horticulturae7100390

Hu, W., Tian, S. B., Di, Q., Duan, S. H., & Dai, K. (2018). Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. Photosynthetica, 56(4), 1204–1211. https://doi.org/10.1007/s11099-018-0822-8

Iovieno, P., Punzo, P., Guida, G., Mistretta, C., Van Oosten, M. J., Nurcato, R., Bostan, H., Colantuono, C., Costa, A., Bagnaresi, P., Chiusano, M. L., Albrizio, R., Giorio, P., Batelli, G., & Grillo, S. (2016). Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00371

Iyakndue, M., Brooks, A., Unimke, A., & Agbo, B. (2017). Effects of Palm Oil Mill Effluent on Soil Microflora and Fertility in Calabar – Nigeria. Asian Journal of Biology, 2(3), 1–11. https://doi.org/10.9734/AJOB/2017/33015

Karimian, N., Johnston, S. G., & Burton, E. D. (2018). Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review. Chemosphere, 197, 803–816. https://doi.org/10.1016/j.chemosphere.2018.01.096

Lubis, K. S., Hanum, H., & Aulia, G. (2021). The effect of biofertilizer, chicken manure and dolomite on chemical soil and the growth of soybean at potential acid sulphate soils. IOP Conference Series: Earth and Environmental Science, 782(4), 042035. https://doi.org/10.1088/1755-1315/782/4/042035

Masita, R., & Arumingtyas, E. L. (2014). Drought Resistance Variation of Mutant of Kenaf KR11 Based on Prolin Accumulation. Natural-B, 3(3), 266–270. https://doi.org/10.21776/ub.natural-b.2014.002.03.10

Mosley, L. M., Biswas, T. K., Cook, F. J., Marschner, P., Palmer, D., Shand, P., Yuan, C., & Fitzpatrick, R. W. (2017). Prolonged recovery of acid sulfate soils with sulfuric materials following severe drought: Causes and implications. Geoderma, 308, 312–320. https://doi.org/10.1016/j.geoderma.2017.03.019

Naeem, M., Ansari, A. A., & Gill, S. S. (Eds.). (2020). Contaminants in Agriculture: Sources, Impacts and Management. Springer International Publishing. https://doi.org/10.1007/978-3-030-41552-5

Nakhli, S. A. A., Delkash, M., Bakhshayesh, B. E., & Kazemian, H. (2017). Application of Zeolites for Sustainable Agriculture: A Review on Water and Nutrient Retention. Water, Air, & Soil Pollution, 228(12), 464. https://doi.org/10.1007/s11270-017-3649-1

Nursanti, I., Budianta, D., Napoleon, A., & Parto, Y. (2013). Zeolite utilization as a catalyst and nutrient adsorbent of an organic fertilizer process from Palm Oil Mill Effluent as raw material. Journal of Tropical Soil 18(3), 177–184. https://journal.unila.ac.id/index.php/tropicalsoil/article/view/185

Ozturk, M., Turkyilmaz Unal, B., García‐Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M. (2021). Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 172(2), 1321–1335. https://doi.org/10.1111/ppl.13297

Pusat Penelitian Tanah (PPT). (1995). Kombinasi Beberapa Sifat Kimia Tanah dan Status Kesuburanya. Pusat Penelitian Tanah. Bogor.

Penn, C., & Camberato, J. (2019). A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture, 9(6), 120. https://doi.org/10.3390/agriculture9060120

Schönbeck, L., Li, M.-H., Lehmann, M. M., Rigling, A., Schaub, M., Hoch, G., Kahmen, A., & Gessler, A. (2021). Soil nutrient availability alters tree carbon allocation dynamics during drought. Tree Physiology, 41(5), 697–707. https://doi.org/10.1093/treephys/tpaa139

Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V. V., & Nayyar, H. (2018). Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Frontiers in Plant Science, 9, 1705. https://doi.org/10.3389/fpls.2018.01705

Shamshuddin, J., Panhwar, Q. A., Shazana, M. A. R. S., Elisa, A. A., Fauziah, C. I. & Naher, U. A. (2016). Improving the productivity of acid sulfate soils for rice cultivation using limestone, basalt, organic fertilizer and/or their combinations. Sains Malaysiana 45(3), 383–392. https://ukm.my/jsm/pdf_files/SM-PDF-45-3-2016/08%20J.%20Shamshudin.pdf

Sharon, J. A., Hathwaik, L. T., Glenn, G. M., Imam, S. H., & Lee, C. C. (2016). Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. Journal of Soil Science and Plant Nutrition, 16(2), 525-536. https://doi.org/10.4067/S0718-95162016005000043

Subramanian, K. S., Manikandan, A., Thirunavukkarasu, M., & Rahale, C. S. (2015). Nano-fertilizers for Balanced Crop Nutrition. In M. Rai, C. Ribeiro, L. Mattoso, & N. Duran (Eds.), Nanotechnologies in Food and Agriculture (pp. 69–80). Springer International Publishing. https://doi.org/10.1007/978-3-319-14024-7_3

Taherisoudejani, H., Heidarpour, M., Shayannejad, M., Shariatmadari, H., Kazemian, H., & Afyuni, M. (2019). Composts Containing Natural and Mg‐Modified Zeolite: The Effect on Nitrate Leaching, Drainage Water, and Yield. CLEAN – Soil, Air, Water, 47(8), 1800257. https://doi.org/10.1002/clen.201800257

Tian, K., Kong, X., Yuan, L., Lin, H., He, Z., Yao, B., Ji, Y., Yang, J., Sun, S., & Tian, X. (2019). Priming effect of litter mineralization: The role of root exudate depends on its interactions with litter quality and soil condition. Plant and Soil, 440(1–2), 457–471. https://doi.org/10.1007/s11104-019-04070-5

Wang, Q., Awasthi, M. K., Ren, X., Zhao, J., Li, R., Wang, Z., Chen, H., Wang, M., & Zhang, Z. (2017). Comparison of biochar, zeolite and their mixture amendment for aiding organic matter transformation and nitrogen conservation during pig manure composting. Bioresource Technology, 245, 300–308. https://doi.org/10.1016/j.biortech.2017.08.158

Yang, F., Tang, C., & Antonietti, M. (2021). Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chemical Society Reviews, 50(10), 6221–6239. https://doi.org/10.1039/D0CS01363C

Zaidun, S. W., Jalloh, M. B., Awang, A., Sam, L. M., Besar, N. A., Musta, B., Ahmed, O. H., & Omar, L. (2019). Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.). Eurasian Journal of Soil Science (EJSS), 8(1), 1–10. https://doi.org/10.18393/ejss.468100




DOI: http://doi.org/10.17503/agrivita.v46i2.4087

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.