Response of Rice Somatic Embryogenesis to Exogenous Melatonin About Its Role in Scavenging Reactive Oxygen Species
Abstract
The success rate of explant morphogenesis in plant breeding using tissue culture techniques is frequently plagued by browning due to the oxidation of phenolic compounds. The cumulated amount of reactive oxygen species (ROS) drives the oxidation of phenolic compounds. Melatonin is reported to take a part in modulating the regulation of antioxidant gene expression, reducing the accumulation of reactive oxygen species, and enhancing the efficacy of tissue culture. This study aims to determine the optimal melatonin concentration on the efficiency of plantlet regeneration and expression of the antioxidant resistance gene in rice callus. This study utilizes rice TN1, Gogo Niti II, Ketan Hitam, and Cigeulis cultivars. Melatonin at 0, 10, and 15 µM concentrations is supplemented in plantlet regeneration media. Rice antioxidant-related genes, Mn-SOD, Cu/ZnSOD, Cytosolic APX, CAT, GPOD, OsAPX, and OsCATA, expressed after melatonin supplementation. Melatonin concentration at 10 µM generates the highest expression of all tested genes in TN1 compared to other varieties. The cumulated amount of hydrogen peroxide (H2O2) shows that Melatonin has the potential to increase the proportion of plant regeneration in Cigeulis (90.48%) and Ketan Hitam (91.67%) varieties with a concentration of 10 µM and in TN1 (94.44%) and Gogo Niti II (80%) at a concentration of 15 µM.
Keywords
Full Text:
PDFReferences
Anjarsari, I. R. D., Suminar, E., & Murgayanti. (2022). Studi pendahuluan regenerasi eksplan teh sebagai upaya percepatan penyediaan bibit unggul secara in vitro. Jurnal Kultivasi, 21(3), 360-368. DOI
Arnao, M. B., & Hernández-Ruiz, J. (2018). Melatonin and its relationship to plant hormones. Annals of Botany, 121(2), 195–207. DOI
Bai, Y., Guo, J., Reiter, R. J., Wei, Y., & Shi, H. (2020). Melatonin synthesis enzymes interact with ascorbate peroxidase to protect against oxidative stress in cassava. Journal of Experimental Botany, 71(18), 5645–5655. DOI
Biddington, N. L. (1992). The influence of ethylene in plant tissue culture. Plant Growth Regulation, 11(2), 173–187. DOI
Christou, A., Manganaris, G. A., & Fotopoulos, V. (2014). Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environmental and Experimental Botany, 107, 46–54. DOI
Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2. DOI
Duran, R. E., Kilic, S., & Coskun, Y. (2019). Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L. In Vitro Cellular & Developmental Biology - Plant, 55, 468–475. DOI
Erland, L. A. E., & Saxena, P. K. (2018). Melatonin in plant morphogenesis. In Vitro Cellular & Developmental Biology - Plant, 54(1), 3–24. DOI
Fan, J., Xie, Y., Zhang, Z., & Chen, L. (2018). Melatonin: A Multifunctional Factor in Plants. International Journal of Molecular Sciences, 19(5), 1528. DOI
Hardeland, R. (2015). Melatonin in plants and other phototrophs: Advances and gaps concerning the diversity of functions. Journal of Experimental Botany, 66(3), 627–646. DOI
Hiei, Y., Ohta, S., Komari, T., & Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 6(2), 271–282. DOI
Iqbal, R., & Khan, T. (2022). Application of exogenous Melatonin in vitro and in planta: a review of its effects and mechanisms of action. Biotechnology Letters, 44, 933–950. DOI
Karthikeyan, A., Pandian, S. T. K., & Ramesh, M. (2009). High frequency plant regeneration from embryogenic callus of a popular indica rice (Oryza sativa L.). Physiology and Molecular Biology of Plants, 15(4), 371–375. DOI
Kim, D.-W., Shibato, J., Agrawal, G. K., Fujihara, S., Iwahashi, H., Kim, D. H., Shim, I.-S., & Rakwal, R. (2007). Gene Transcription in the Leaves of Rice Undergoing Salt-induced Morphological Changes (Oryza sativa L.). Molecules and Cells, 24(1), 45–59. DOI
Liang, D., Shen, Y., Ni, Z., Wang, Q., Lei, Z., Xu, N., Deng, Q., Lin, L., Wang, J., Lv, X., & Xia, H. (2018). Exogenous Melatonin Application Delays Senescence of Kiwifruit Leaves by Regulating the Antioxidant Capacity and Biosynthesis of Flavonoids. Frontiers in Plant Science, 9, 426. DOI
Ming, N. J., Binte Mostafiz, S., Johon, N. S., Abdullah Zulkifli, N. S., & Wagiran, A. (2019). Combination of Plant Growth Regulators, Maltose, and Partial Desiccation Treatment Enhance Somatic Embryogenesis in Selected Malaysian Rice Cultivar. Plants, 8(6), 144. DOI
Mostafiz, S. B., Wagiran, A., Johan, N. S., Abdullah Zulkifli, N. S., & Ng, J. M. (2018). The Effects of Temperature on Callus Induction and Regeneration in Selected Malaysian Rice Cultivar Indica. Sains Malaysiana, 47(11), 2647–2655. DOI
Mun, B.-G., Lee, C.-J., Hussain, A., Lee, G. S., Lee, S.-U., Kim, K.-M., & Yun, B.-W. (2017). High-throughput Screening of Rice for Nitrosative-stress Response and the Identification of Effective pH Range for Nitric Oxide Donor S-Nitrocysteine. International Journal of Agriculture and Biology, 19(01), 41–47. DOI
Murch, S. J., Campbell, S. S. B., & Saxena, P. K. (2001). The role of serotonin and Melatonin in plant morphogenesis: Regulation of auxin-induced root organogenesis in in vitro-cultured explants of st. John’s Wort (Hypericum perforatum L.). In Vitro Cellular and Developmental Biology - Plant, 37(6), 786–793. https://doi.org/https://doi.org/10.1007/s11627-001-0130-yNabilah, S., Handoyo, T., Kim, K.-M., & Ubaidillah, M. (2022). Expression analysis of OsSERK, OsLEC1 and OsWOX4 genes in rice (Oryza sativa L.) callus during somatic embryo development. BIOCELL, 46(7), 1633–1641. DOI
Nabors, M. W., Kroskey, C. S., & McHugh, D. M. (1982). Green Spots are Predictors of High Callus Growth Rates and Shoot Formation in Normal and in Salt Stressed Tissue Cultures of Oat (Avena sativa L.). Zeitschrift Für Pflanzenphysiologie, 105(4), 341–349. DOI
Nawaz, M. A., Huang, Y., Bie, Z., Ahmed, W., Reiter, R. J., Niu, M., & Hameed, S. (2016). Melatonin: Current Status and Future Perspectives in Plant Science. Frontiers in Plant Science, 6(1230). DOI
Nguyen, T. H. N., Winkelmann, T., & Debener, T. (2020). Genetic analysis of callus formation in a diversity panel of 96 rose genotypes. Plant Cell, Tissue and Organ Culture (PCTOC), 142(3), 505–517. DOI
Onuoha, I. C., Eze, C. J., & Unamba, C. I. N. (2011). In Vitro Prevention of Browning in Plantain Culture. OnLine Journal of Biological Sciences, 11(1), 13–17. DOI
Pardo-Hernández, M., López-Delacalle, M., & Rivero, R. M. (2020). ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants. Antioxidants, 9(11), 1078. DOI
Prakasha, A., & Umesha, S. (2016). Biochemical and Molecular Variations of Guaiacol Peroxidase and Total Phenols in Bacterial Wilt Pathogenesis of Solanum melongena. Bioochemistry and Analytical Biochemistry, 5(3), 1–7. DOI
Puhan, P., Nagireddy, R. K., Vemireddy, L. R., & Siddiq, E. A. (2018). Effect of NiR Gene on In Vitro Regeneration Protocol of Indica, Japonica, Aromatic and Wild rice varieties. Oryza, 55(4), 500–510. DOI
Purnamaningsih, R. (2006). Induksi Kalus dan Optimasi Regenerasi Empat Varietas Padi Melalui Kultur In Vitro. AgroBiogen, 2(2), 74–80. DOI
Reiter, R. J., Tan., D-X., Zhou, Z., Cruz, M. H. C., Fuentes-Broto, L., & Galano, A. (2015). Pytomelatonin: Assiting Plants to Survive and Thrive. Molecules, 20, 7396-7437. DOI
Safitri, F. A., Ubaidillah, M., & Kim, K. M. (2016). Efficiency of transformation mediated by Agrobacterium tumefaciens using vacuum infiltration in rice (Oryza sativa L.). Journal of Plant Biotechnology, 43(1), 66–75. DOI
Sahoo, K. K., Tripathi, A. K., Pareek, A., Sopory, S. K., & Singla-Pareek, S. L. (2011). An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods, 7(49). DOI
Shahsavari, E., Maheran, A. A., Akmar, A. S. N., & Hanafi, M. M. (2010). The effect of plant growth regulators on optimization of tissue culture system in Malaysian upland rice. African Journal of Biotechnology, 9(14), 2089–2094. website
Sharif, R., Xie, C., Zhang, H., Arnao, M. B., Ali, M., Ali, Q., Muhammad, I., Shalmani, A., Nawaz, M. A., Chen, P., & Li, Y. (2018). Melatonin and Its Effects on Plant Systems. Molecules, 23, 2352. DOI
Shi, H., Chen, K., Wei, Y., & He, C. (2016). Fundamental Issues of Melatonin-Mediated Stress Signaling in Plants. Frontiers in Plant Science, 7, 1124. DOI
Silva, T. D. (2010). Indica rice anther culture: Can the impasse be surpassed? Plant Cell, Tissue and Organ Culture (PCTOC), 100(1), 1–11. DOI
Sun, C., Liu, L., Wang, L., Li, B., Jin, C., & Lin, X. (2021). Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology, 63(1), 126–145. DOI
Tan, D.-X., Manchester, L. C., Liu, X., Rosales-Corral, S. A., Acuna-Castroviejo, D., & Reiter, R. J. (2013). Mitochondria and Chloroplasts as The Original Sites of Melatonin Synthesis: A Hypothesis Related To Melatonin’s Primary Function and Evolution in Eukaryotes. Journal of Pineal Research, 54(2), 127–138. DOI
Ubaidillah, M., Oktaviani, F., Mufadilah, M.A., Avivi, S., Thamrin, N., Indrawati, A., Puspito, A.N., Kim, K.M., and Hartatik, S. (2023). Response Of Regulation Of Resistance Genes, Reactive Oxygen Species, And Antioxidant Enzymes To Salicylic Acid Treatments In Drought Tolerant Rice. Agronomy Research 21(S1):397–409. DOI
Valdez, M., Muniz, M., Vega, J. R., & Espinoza, A. M. (1996). Plant Regeneration of Indica Rice (Oryza sativa) Cultivars From Mature Embryo-Derived Calli. Revista de Biologia Tropica, 44(3), 13–21. website
Visarada, K. B. R. S., Sailaja, M., & Sarma, N. P. (2002). Effect of Callus Induction Media on Morphology of Embryogenic Calli in Rice Genotypes. Biologia Plantarum, 45, 495–502. DOI
Yahraus, T., Chandra, S., Legendre, L., & Low, P. S. (1995). Evidence for a Mechanically Induced Oxidative Burst. Plant Physiology. Plant Physiology, 109(4), 1259-1266. DOI
Yang, J. H., Seo, H. H., Han, S. J., Yoon, E. K., Yang, M. S., & Lee, W. S. (2008). Phytohormone Abscisic Acid Control RNA-Dependent RNA Polymerase 6 Gene Expression and Post-Transcriptional Gene Silencing in Rice Cells. Nucleid Acids Research, 36(4), 1220–1226. DOI
Zhang, J., Li, H., Xu, B., Li, J., & Huang, B. (2016). Exogenous Melatonin Suppresses Dark-Induced Leaf Senescence by Activating the Superoxide Dismutase Catalase Antioxidant Pathway and Down-Regulating Chlorophyll Degradation in Excised Leaves of Perennial Ryegrass (Lolium perenne L.). Fronties in Plant Science, 7(1500). DOI
Zhao, H., Su, T., Huo, L., Wei, H., Jiang, Y., Xu, L., & Ma, F. (2015). Unveiling the mechanism of melatonin impacts on maize seedling growth: Sugar metabolism as a case. Journal of Pineal Research, 59(2), 255–266. DOI
DOI: http://doi.org/10.17503/agrivita.v46i1.4060
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.