Response of Rice Somatic Embryogenesis to Exogenous Melatonin About Its Role in Scavenging Reactive Oxygen Species

Mohammad Ubaidillah, Nabila Nur Aisyah Al Ayyubi, Rendryana Aulia Nur Khofifa, Parawita Dewanti

Abstract


The success rate of explant morphogenesis in plant breeding using tissue culture techniques is frequently plagued by browning due to the oxidation of phenolic compounds. The cumulated amount of reactive oxygen species (ROS) drives the oxidation of phenolic compounds. Melatonin is reported to take a part in modulating the regulation of antioxidant gene expression, reducing the accumulation of reactive oxygen species, and enhancing the efficacy of tissue culture. This study aims to determine the optimal melatonin concentration on the efficiency of plantlet regeneration and expression of the antioxidant resistance gene in rice callus. This study utilizes rice TN1, Gogo Niti II, Ketan Hitam, and Cigeulis cultivars. Melatonin at 0, 10, and 15 µM concentrations is supplemented in plantlet regeneration media. Rice antioxidant-related genes, Mn-SOD, Cu/ZnSOD, Cytosolic APX, CAT, GPOD, OsAPX, and OsCATA, expressed after melatonin supplementation. Melatonin concentration at 10 µM generates the highest expression of all tested genes in TN1 compared to other varieties. The cumulated amount of hydrogen peroxide (H2O2) shows that Melatonin has the potential to increase the proportion of plant regeneration in Cigeulis (90.48%) and Ketan Hitam (91.67%) varieties with a concentration of 10 µM and in TN1 (94.44%) and Gogo Niti II (80%) at a concentration of 15 µM.


Keywords


Antioxidant; Gene Expression; Melatonin; Morphogenesis; Tissue Culture

Full Text:

PDF

References


Anjarsari, I. R. D., Suminar, E., & Murgayanti. (2022). Studi pendahuluan regenerasi eksplan teh sebagai upaya percepatan penyediaan bibit unggul secara in vitro. Jurnal Kultivasi, 21(3), 360-368. DOI

Arnao, M. B., & Hernández-Ruiz, J. (2018). Melatonin and its relationship to plant hormones. Annals of Botany, 121(2), 195–207. DOI

Bai, Y., Guo, J., Reiter, R. J., Wei, Y., & Shi, H. (2020). Melatonin synthesis enzymes interact with ascorbate peroxidase to protect against oxidative stress in cassava. Journal of Experimental Botany, 71(18), 5645–5655. DOI

Biddington, N. L. (1992). The influence of ethylene in plant tissue culture. Plant Growth Regulation, 11(2), 173–187. DOI

Christou, A., Manganaris, G. A., & Fotopoulos, V. (2014). Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environmental and Experimental Botany, 107, 46–54. DOI

Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2. DOI

Duran, R. E., Kilic, S., & Coskun, Y. (2019). Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L. In Vitro Cellular & Developmental Biology - Plant, 55, 468–475. DOI

Erland, L. A. E., & Saxena, P. K. (2018). Melatonin in plant morphogenesis. In Vitro Cellular & Developmental Biology - Plant, 54(1), 3–24. DOI

Fan, J., Xie, Y., Zhang, Z., & Chen, L. (2018). Melatonin: A Multifunctional Factor in Plants. International Journal of Molecular Sciences, 19(5), 1528. DOI

Hardeland, R. (2015). Melatonin in plants and other phototrophs: Advances and gaps concerning the diversity of functions. Journal of Experimental Botany, 66(3), 627–646. DOI

Hiei, Y., Ohta, S., Komari, T., & Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 6(2), 271–282. DOI

Iqbal, R., & Khan, T. (2022). Application of exogenous Melatonin in vitro and in planta: a review of its effects and mechanisms of action. Biotechnology Letters, 44, 933–950. DOI

Karthikeyan, A., Pandian, S. T. K., & Ramesh, M. (2009). High frequency plant regeneration from embryogenic callus of a popular indica rice (Oryza sativa L.). Physiology and Molecular Biology of Plants, 15(4), 371–375. DOI

Kim, D.-W., Shibato, J., Agrawal, G. K., Fujihara, S., Iwahashi, H., Kim, D. H., Shim, I.-S., & Rakwal, R. (2007). Gene Transcription in the Leaves of Rice Undergoing Salt-induced Morphological Changes (Oryza sativa L.). Molecules and Cells, 24(1), 45–59. DOI

Liang, D., Shen, Y., Ni, Z., Wang, Q., Lei, Z., Xu, N., Deng, Q., Lin, L., Wang, J., Lv, X., & Xia, H. (2018). Exogenous Melatonin Application Delays Senescence of Kiwifruit Leaves by Regulating the Antioxidant Capacity and Biosynthesis of Flavonoids. Frontiers in Plant Science, 9, 426. DOI

Ming, N. J., Binte Mostafiz, S., Johon, N. S., Abdullah Zulkifli, N. S., & Wagiran, A. (2019). Combination of Plant Growth Regulators, Maltose, and Partial Desiccation Treatment Enhance Somatic Embryogenesis in Selected Malaysian Rice Cultivar. Plants, 8(6), 144. DOI

Mostafiz, S. B., Wagiran, A., Johan, N. S., Abdullah Zulkifli, N. S., & Ng, J. M. (2018). The Effects of Temperature on Callus Induction and Regeneration in Selected Malaysian Rice Cultivar Indica. Sains Malaysiana, 47(11), 2647–2655. DOI

Mun, B.-G., Lee, C.-J., Hussain, A., Lee, G. S., Lee, S.-U., Kim, K.-M., & Yun, B.-W. (2017). High-throughput Screening of Rice for Nitrosative-stress Response and the Identification of Effective pH Range for Nitric Oxide Donor S-Nitrocysteine. International Journal of Agriculture and Biology, 19(01), 41–47. DOI

Murch, S. J., Campbell, S. S. B., & Saxena, P. K. (2001). The role of serotonin and Melatonin in plant morphogenesis: Regulation of auxin-induced root organogenesis in in vitro-cultured explants of st. John’s Wort (Hypericum perforatum L.). In Vitro Cellular and Developmental Biology - Plant, 37(6), 786–793. https://doi.org/https://doi.org/10.1007/s11627-001-0130-yNabilah, S., Handoyo, T., Kim, K.-M., & Ubaidillah, M. (2022). Expression analysis of OsSERK, OsLEC1 and OsWOX4 genes in rice (Oryza sativa L.) callus during somatic embryo development. BIOCELL, 46(7), 1633–1641. DOI

Nabors, M. W., Kroskey, C. S., & McHugh, D. M. (1982). Green Spots are Predictors of High Callus Growth Rates and Shoot Formation in Normal and in Salt Stressed Tissue Cultures of Oat (Avena sativa L.). Zeitschrift Für Pflanzenphysiologie, 105(4), 341–349. DOI

Nawaz, M. A., Huang, Y., Bie, Z., Ahmed, W., Reiter, R. J., Niu, M., & Hameed, S. (2016). Melatonin: Current Status and Future Perspectives in Plant Science. Frontiers in Plant Science, 6(1230). DOI

Nguyen, T. H. N., Winkelmann, T., & Debener, T. (2020). Genetic analysis of callus formation in a diversity panel of 96 rose genotypes. Plant Cell, Tissue and Organ Culture (PCTOC), 142(3), 505–517. DOI

Onuoha, I. C., Eze, C. J., & Unamba, C. I. N. (2011). In Vitro Prevention of Browning in Plantain Culture. OnLine Journal of Biological Sciences, 11(1), 13–17. DOI

Pardo-Hernández, M., López-Delacalle, M., & Rivero, R. M. (2020). ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants. Antioxidants, 9(11), 1078. DOI

Prakasha, A., & Umesha, S. (2016). Biochemical and Molecular Variations of Guaiacol Peroxidase and Total Phenols in Bacterial Wilt Pathogenesis of Solanum melongena. Bioochemistry and Analytical Biochemistry, 5(3), 1–7. DOI

Puhan, P., Nagireddy, R. K., Vemireddy, L. R., & Siddiq, E. A. (2018). Effect of NiR Gene on In Vitro Regeneration Protocol of Indica, Japonica, Aromatic and Wild rice varieties. Oryza, 55(4), 500–510. DOI

Purnamaningsih, R. (2006). Induksi Kalus dan Optimasi Regenerasi Empat Varietas Padi Melalui Kultur In Vitro. AgroBiogen, 2(2), 74–80. DOI

Reiter, R. J., Tan., D-X., Zhou, Z., Cruz, M. H. C., Fuentes-Broto, L., & Galano, A. (2015). Pytomelatonin: Assiting Plants to Survive and Thrive. Molecules, 20, 7396-7437. DOI

Safitri, F. A., Ubaidillah, M., & Kim, K. M. (2016). Efficiency of transformation mediated by Agrobacterium tumefaciens using vacuum infiltration in rice (Oryza sativa L.). Journal of Plant Biotechnology, 43(1), 66–75. DOI

Sahoo, K. K., Tripathi, A. K., Pareek, A., Sopory, S. K., & Singla-Pareek, S. L. (2011). An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods, 7(49). DOI

Shahsavari, E., Maheran, A. A., Akmar, A. S. N., & Hanafi, M. M. (2010). The effect of plant growth regulators on optimization of tissue culture system in Malaysian upland rice. African Journal of Biotechnology, 9(14), 2089–2094. website

Sharif, R., Xie, C., Zhang, H., Arnao, M. B., Ali, M., Ali, Q., Muhammad, I., Shalmani, A., Nawaz, M. A., Chen, P., & Li, Y. (2018). Melatonin and Its Effects on Plant Systems. Molecules, 23, 2352. DOI

Shi, H., Chen, K., Wei, Y., & He, C. (2016). Fundamental Issues of Melatonin-Mediated Stress Signaling in Plants. Frontiers in Plant Science, 7, 1124. DOI

Silva, T. D. (2010). Indica rice anther culture: Can the impasse be surpassed? Plant Cell, Tissue and Organ Culture (PCTOC), 100(1), 1–11. DOI

Sun, C., Liu, L., Wang, L., Li, B., Jin, C., & Lin, X. (2021). Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology, 63(1), 126–145. DOI

Tan, D.-X., Manchester, L. C., Liu, X., Rosales-Corral, S. A., Acuna-Castroviejo, D., & Reiter, R. J. (2013). Mitochondria and Chloroplasts as The Original Sites of Melatonin Synthesis: A Hypothesis Related To Melatonin’s Primary Function and Evolution in Eukaryotes. Journal of Pineal Research, 54(2), 127–138. DOI

Ubaidillah, M., Oktaviani, F., Mufadilah, M.A., Avivi, S., Thamrin, N., Indrawati, A., Puspito, A.N., Kim, K.M., and Hartatik, S. (2023). Response Of Regulation Of Resistance Genes, Reactive Oxygen Species, And Antioxidant Enzymes To Salicylic Acid Treatments In Drought Tolerant Rice. Agronomy Research 21(S1):397–409. DOI

Valdez, M., Muniz, M., Vega, J. R., & Espinoza, A. M. (1996). Plant Regeneration of Indica Rice (Oryza sativa) Cultivars From Mature Embryo-Derived Calli. Revista de Biologia Tropica, 44(3), 13–21. website

Visarada, K. B. R. S., Sailaja, M., & Sarma, N. P. (2002). Effect of Callus Induction Media on Morphology of Embryogenic Calli in Rice Genotypes. Biologia Plantarum, 45, 495–502. DOI

Yahraus, T., Chandra, S., Legendre, L., & Low, P. S. (1995). Evidence for a Mechanically Induced Oxidative Burst. Plant Physiology. Plant Physiology, 109(4), 1259-1266. DOI

Yang, J. H., Seo, H. H., Han, S. J., Yoon, E. K., Yang, M. S., & Lee, W. S. (2008). Phytohormone Abscisic Acid Control RNA-Dependent RNA Polymerase 6 Gene Expression and Post-Transcriptional Gene Silencing in Rice Cells. Nucleid Acids Research, 36(4), 1220–1226. DOI

Zhang, J., Li, H., Xu, B., Li, J., & Huang, B. (2016). Exogenous Melatonin Suppresses Dark-Induced Leaf Senescence by Activating the Superoxide Dismutase Catalase Antioxidant Pathway and Down-Regulating Chlorophyll Degradation in Excised Leaves of Perennial Ryegrass (Lolium perenne L.). Fronties in Plant Science, 7(1500). DOI

Zhao, H., Su, T., Huo, L., Wei, H., Jiang, Y., Xu, L., & Ma, F. (2015). Unveiling the mechanism of melatonin impacts on maize seedling growth: Sugar metabolism as a case. Journal of Pineal Research, 59(2), 255–266. DOI




DOI: http://doi.org/10.17503/agrivita.v46i1.4060

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.