The Effectiveness of Biochar and Compost-Based Fertilizers in Restoring Soil Fertility and Red Chili Yields
Abstract
Keywords
Full Text:
PDFReferences
Adediran, J. A., Taiwo, L. B., Akande, M. O., Sobulo, R. A., & Idowu, O. J. (2005). Application of Organic and Inorganic Fertilizer for Sustainable Maize and Cowpea Yields in Nigeria. Journal of Plant Nutrition, 27(7), 1163–1181. DOI
Adekiya, A. O., Olayanju, T. M. A., Ejue, S. W., Alori, E. T., & Adegbite, K. A. (2020). Contribution of Biochar in Improving Soil Health. In B. Giri & A. Varma (Eds.), Soil Health (Vol. 59, pp. 99–113). Springer International Publishing. DOI
Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost, and biochar-compost for soil quality, maize yield, and greenhouse gas emissions in tropical agricultural soil. Science of the Total Environment, 543, 295–306. DOI
Amaral, H. D. D. R., Situmeang, Y. P., & Suarta, M. (2019). The effects of compost and biochar on the growth and yield of red chili plants. Journal of Physics: Conference Series, 1402(3), 033057. DOI
Amoah-Antwi, C., Kwiatkowska-Malina, J., Thornton, S. F., Fenton, O., Malina, G., & Szara, E. (2020). Restoration of soil quality using biochar and brown coal waste: A review. Science of the Total Environment, 722, 137852. DOI
Bamminger, C., Poll, C., Sixt, C., Högy, P., Wüst, D., Kandeler, E., & Marhan, S. (2016). Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agriculture, Ecosystems & Environment, 233, 308–317. DOI
Bassouny, M., & Abbas, M. (2019). Role of biochar in managing the irrigation water requirements of maize plants: The pyramid model signifying the soil hydro-physical and environmental markers. Egyptian Journal of Soil Science, 59(2-Serial Number 2), 99-115. DOI
Bolan, N., Hoang, S. A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., Joseph, S., Jung, S., Kim, K. H., Kirkham, M. B., Kua, H. W., Kumar, M., Kwon, E. E., Ok, Y. S., Perera, V., Rinklebe, J., Shaheen, S. M., Sarkar, B., Sarmah, A. K., … Van Zwieten, L. (2022). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 67(2), 150–200. DOI
Calamai, A., Chiaramonti, D., Casini, D., Masoni, A., & Palchetti, E. (2020). Short-term effects of organic amendments on soil properties and maize (Zea maize L.) growth. Agriculture, 10(5), 158. DOI
Chen, Z., Xu, Y., Cusack, D. F., Castellano, M. J., & Ding, W. (2019). Molecular insights into the inhibitory effect of nitrogen fertilization on manure decomposition. Geoderma, 353, 104–115. DOI
Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G. D., Rutherford, D. W., Sparrevik, M., Hale, S. E., Obia, A., & Mulder, J. (2013). Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy, 3(2), 256–274. DOI
Eusufzai, M. K., & Fujii, K. (2012). Effect of Organic Matter Amendment on Hydraulic and Pore Characteristics of a Clay Loam Soil. Open Journal of Soil Science, 02(04), 372–381. DOI
Frimpong, K. A., Abban-Baidoo, E., & Marschner, B. (2021). Can combined compost and biochar application improve the quality of highly weathered coastal savanna soil? Heliyon, 7(5), e07089. DOI
Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061–2069. DOI
Głąb, T., Palmowska, J., Zaleski, T., & Gondek, K. (2016). Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11–20. DOI
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment, 206, 46–59. DOI
Haider, F. U., Coulter, J. A., Cai, L., Hussain, S., Cheema, S. A., Wu, J., & Zhang, R. (2022). An overview of biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere, 32(1), 107–130. DOI
Hammerschmiedt, T., Holatko, J., Kucerik, J., Mustafa, A., Radziemska, M., Kintl, A., Malicek, O., Baltazar, T., Latal, O., & Brtnicky, M. (2022). Manure Maturation with Biochar: Effects on Plant Biomass, Manure Quality and Soil Microbiological Characteristics. Agriculture, 12(3), 314. DOI
Hanpattanakit, P., Vanitchung, S., Saeng-Ngam, S., & Pearaksa, P. (2021). Effect of biochar on red chili growth and production in heavy acid soil. Chemical Engineering Transactions, 83, 283–288. DOI
Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379–420. DOI
Hui, D. (2021). Effects of Biochar Application on Soil Properties, Plant Biomass Production, and Soil Greenhouse Gas Emissions: A Mini-Review. Agricultural Sciences, 12(03), 213–236. DOI
Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., Ammara, U., Ok, Y. S., & Siddique, K. H. M. (2017). Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments, 17(3), 685–716. DOI
Jabborova, D., Wirth, S., Kannepalli, A., Narimanov, A., Desouky, S., Davranov, K., Sayyed, R. Z., El Enshasy, H., Malek, R. A., Syed, A., & Bahkali, A. H. (2020). Co-inoculation of rhizobacteria and biochar application improves growth and nutrients in soybeans and enriches soil nutrients and enzymes. Agronomy, 10(8), 1142. DOI
Jackson, W. R. (1993). Humic, fulvic and microbial balance: organic soil conditioning (p. 329). Evergreen: Jackson Research Center.
Japakumar, J., Abdullah, R., & Mohd Rosli, N. S. (2021). Effects of biochar and compost applications on soil properties and growth performance of Amaranthus sp. grown at the urban community garden. AGRIVITA Journal of Agricultural Science, 43(3), 441–453. DOI
Karthik, A., Hassan Hussainy, S. A., & Rajasekar, M. (2020). Comprehensive Study on Biochar and its Effect on Soil Properties: A Review. International Journal of Current Microbiology and Applied Sciences, 9(5), 459–477. DOI
Kätterer, T., Roobroeck, D., Andrén, O., Kimutai, G., Karltun, E., Kirchmann, H., Nyberg, G., Vanlauwe, B., & Röing de Nowina, K. (2019). Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Research, 235, 18–26. DOI
Khatoon, H., Solanki, P., Narayan, M., Tewari, L., & Rai, J.P.N. (2017). Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. International Journal of Chemical Studies, 5(6), 1648–1656. website
Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, 41(4), 990–1000. DOI
Kuzyakov, Y., Bogomolova, I., & Glaser, B. (2014). Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology and Biochemistry, 70, 229–236. DOI
Ma, N., Zhang, L., Zhang, Y., Yang, L., Yu, C., Yin, G., Doane, T. A., Wu, Z., Zhu, P., & Ma, X. (2016). Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application. PLOS ONE, 11(5), e0154091. DOI
Nurhidayati, & Mariati. (2014). Utilization of maize cob biochar and rice husk charcoal as soil amendment for improving acid soil fertility and productivity. Journal of Degraded and Mining Lands Management, 2(1), 223–230. DOI
Pettit, R. E. (2014). Organic matter, humus, humate, humic acid, fulvic acid, and humin: Their importance in soil fertility and plant health. Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS) 2014, 1–5.
Rogovska, N., Laird, D. A., Rathke, S. J., & Karlen, D. L. (2014). Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma, 230–231, 340–347. DOI
Sadegh-Zadeh, F., Tolekolai, S. F., Bahmanyar, M. A., & Emadi, M. (2018). Application of Biochar and Compost for Enhancement of Rice (Oryza sativa L.) Grain Yield in Calcareous Sandy Soil. Communications in Soil Science and Plant Analysis, 49(5), 552–566. DOI
Schulz, H., Dunst, G., & Glaser, B. (2013). Positive effects of composted biochar on plant growth and soil fertility. Agronomy for Sustainable Development, 33(4), 817–827. DOI
Sharma, P., Abrol, V., Sharma, V., Chaddha, S., Srinivasa Rao, C., Ganie, A. Q., Ingo Hefft, D., El-Sheikh, M. A., & Mansoor, S. (2021). Effectiveness of biochar and compost on improving soil hydro-physical properties, crop yield, and monetary returns in inceptisol subtropics. Saudi Journal of Biological Sciences, 28(12), 7539–7549. DOI
Situmeang, Y. P., Adnyana, I. M., Subadiyasa, I. N. N., & Merit, I. N. (2018). Effectiveness of Bamboo Biochar combined with compost and NPK fertilizer to improve soil quality and corn yield. International Journal on Advanced Science, Engineering and Information Technology, 8(5), 2241–2248. DOI
Situmeang, Y. P., Sudita, I. D. N., & Suarta, M. (2019). Manure utilization from cows, goats, and chickens as compost, biochar, and poschar in increasing the red chili yield. International Journal on Advanced Science, Engineering and Information Technology, 9(6), 2088–2095. DOI
Situmeang, Y. P., Sudita, I. D. N., & Suarta, M. (2021). Application of Compost and Biochar from Cow, Goat, and Chicken Manure to Restore Soil Fertility and Yield of Red Chili. International Journal on Advanced Science, Engineering and Information Technology, 11(5), 2008-2015. DOI
Skodras, G., Grammelis, P., Basinas, P., Kakaras, E., & Sakellaropoulos, G. (2006). Pyrolysis and combustion characteristics of biomass and waste-derived feedstock. Industrial & Engineering Chemistry Research, 45(11), 3791–3799. website
Sun, F., & Lu, S. (2014). Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. Journal of Plant Nutrition and Soil Science, 177(1), 26–33. DOI
Toková, L., Igaz, D., Horák, J., & Aydin, E. (2020). Effect of biochar application and re‐application on soil bulk density, porosity, saturated hydraulic conductivity, water content, and soil water availability in a silty loam haplic luvisol. Agronomy, 10(7), 1005. DOI
Usman, A. R. A., Al-Wabel, M. I., Ok, Y. S., Al-Harbi, A., Wahb-Allah, M., El-Naggar, A. H., Ahmad, M., Al-Faraj, A., & Al-Omran, A. (2016). Conocarpus Biochar Induces Changes in Soil Nutrient Availability and Tomato Growth Under Saline Irrigation. Pedosphere, 26(1), 27–38. DOI
Vandecasteele, B., Reubens, B., Willekens, K., & De Neve, S. (2014). Composting for increasing the fertilizer value of chicken manure: Effects of feedstock on P availability. Waste and Biomass Valorization, 5(3), 491–503. DOI
Varela Milla, O. V, Rivera, E. B., Huang, W. J., Chien, C. C., & Wang, Y. M. (2013). Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. Journal of Soil Science and Plant Nutrition, 13(2), 251–266. DOI
Yaseen, S., Amjad, S. F., Mansoora, N., Kausar, S., Shahid, H., Alamri, S. A. M., Alrumman, S. A., Eid, E. M., Ansari, M. J., Danish, S., & Datta, R. (2021). Supplemental effects of biochar and foliar application of ascorbic acid on physio-biochemical attributes of barley (Hordeum vulgare L.) under cadmium-contaminated soil. Sustainability, 13(16), 9128. DOI
Yustisia, Riyanto, D., Thamrin, T., & Amirrullah, J. (2021). Implementation of Rice and Maize Cultivation Technology Based on Agronomic Effectiveness. E3S Web of Conferences, 232, 03025. DOI
Zhang, M., Liu, Y., Wei, Q., Liu, L., Gu, X., & Gou, J. (2022). Biochar-Based Fertilizer Enhances the Production Capacity and Economic Benefit of Open-Field Eggplant in the Karst Region of Southwest China. Agriculture, 12(9), 1388. DOI
Zhao, H., Xie, T., Xiao, H., & Gao, M. (2022). Biochar-Based Fertilizer Improved Crop Yields and N Utilization Efficiency in a Maize–Chinese Cabbage Rotation System. Agriculture, 12(7), 1030. DOI
DOI: http://doi.org/10.17503/agrivita.v46i2.4040
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.