Evaluation of the Resistance of Some Maize Varieties to Rot Diseases Caused by Different Strains of Fusarium verticillioides (Sacc.) Nirenberg

Akinlolu Olalekan Akanmu, Ayodele Adegboyega Sobowale, Adegboyega Christopher Odebode, Olubukola Oluranti Babalola

Abstract


Maize ear rot, caused by Fusarium verticillioides, is a significant concern due to its impact on grain contamination and yield reduction. The virulence of this pathogen varies markedly among different strains. This study aimed to assess the pathogenicity of ten F. verticillioides strains; EKT 06, AKR 05, IBD 06, ILH 03, IGH 06, SAK 03, ERW 06, IGB 06, IJB 02, and ILR 05 across three maize varieties: SWAM-1-SR-Y, DMR LSR Y, and BR 9943-DMR-SR-W. A screen-house pathogenicity test was conducted, arranged in a complete randomized design (CRD) with four replications. Inoculation with standardized spore suspensions was conducted through the silk channel in the 7th week after planting (WAP). Among the strains, AKR 05 exhibited the highest virulence, with ear rot severity of 52.8%, followed by ILR 05 (48.6%), ERW 06 (47.3%), and IBD 06 (46.1%). In contrast, SAK 03 (31.4%) and ILH 03 (37.8%) demonstrated the lowest severity levels. The growth parameters of BR 9943-DMR-SR-W were significantly higher than those of SWAM-1-SR-Y and DMR-LSR-Y. The BR 9943-DMR-SR-W variety showed the greatest resistance to the fungal strains, suggesting it is a promising option for cultivation in environments prone to ear rot. Further field trials are necessary to validate these findings.

Keywords


Disease severity; Ear rot; Fungi; Pathogenicity; Virulence

Full Text:

PDF

References


Abiala, M. A., Akanmu, A. O., Oribhaboise, A. C., & Aroge, T. (2020). Combined effects of Ocimum gratissimum and soil-borne phytopathogenic fungi on seedling growth of quality protein maize. Journal of Advances in Biology & Biotechnology, 25–32. DOI

Adedeji, A. A., Häggblom, M. M., & Babalola, O. O. (2020). Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. Scientific African, 9, e00492. DOI

Adeniji, A. A., & Babalola, O. O. (2018). Tackling maize fusariosis: In search of Fusarium graminearum biosuppressors. Archives of Microbiology, 200(8), 1239–1255. DOI

Akanmu, A. O., Sobowale, A. A., Abiala, M. A., Olawuyi, O. J., & Odebode, A. C. (2020). Efficacy of biochar in the management of Fusarium verticillioides Sacc. causing ear rot in Zea mays L. Biotechnology Reports, 26, e00474. DOI

Alori, E. T., Babalola, O. O., & Prigent-Combaret, C. (2019). Impacts of microbial inoculants on the growth and yield of maize plant. The Open Agriculture Journal, 13(1), 1–8. DOI

Aoki, T., O’Donnell, K., & Geiser, D. M. (2014). Systematics of key phytopathogenic Fusarium species: Current status and future challenges. Journal of General Plant Pathology, 80(3), 189–201. DOI

Bantu, R. A., Devlash, R., Rana, S. K., & Guleria, S. K. (2021). Evaluation of medium maturing maize inbred lines for resistance to Turcicum Leaf Blight caused by Exserohilum turcicum. Himachal Journal of Agricultural Research, 47(1), 120-124. website

Caldwell, R. W., Tuite, J., & Carlton, W. W. (1981). Pathogenicity of Penicillia to corn ears. Phytopathology, 71(2), 175-180. DOI

Camiletti, B. X., Torrico, A. K., Fernanda Maurino, M., Cristos, D., Magnoli, C., Lucini, E. I., & De La Paz Giménez Pecci, M. (2017). Fungal screening and aflatoxin production by Aspergillus section Flavi isolated from pre-harvest maize ears grown in two Argentine regions. Crop Protection, 92, 41–48. DOI

Czembor, E., Waśkiewicz, A., Piechota, U., Puchta, M., Czembor, J. H., & Stȩpień, Ł. (2019). Differences in ear rot resistance and Fusarium verticillioides-produced fumonisin contamination between Polish currently and historically used maize inbred lines. Frontiers in Microbiology, 10, 449. DOI

Degen, T., Bakalovic, N., Bergvinson, D., & Turlings, T. C. J. (2012). Differential performance and parasitism of caterpillars on maize inbred lines with distinctly different herbivore-induced volatile emissions. PLoS ONE, 7(10), e47589. DOI

Desjardins, A. E., Manandhar, H. K., Plattner, R. D., Manandhar, G. G., Poling, S. M., & Maragos, C. M. (2000). Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Applied and Environmental Microbiology, 66(3), 1020–1025. DOI

Einloft, T. C., Hartke, S., De Oliveira, P. B., Saraiva, P. S., & Dionello, R. G. (2021). Selection of rhizobacteria for biocontrol of Fusarium verticillioides on non-rhizospheric soil and maize seedlings roots. European Journal of Plant Pathology, 160(3), 503–518. DOI

Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X., & Borriss, R. (2018). Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol. Frontiers in Microbiology, 9, 2491. DOI

Luna, M. P. R., & Wise, K. A. (2015). Timing and efficacy of fungicide applications for Diplodia ear rot management in corn. Plant Health Progress, 16(3), 123–131. DOI

Martins, J. L., Jideani, I. A., Yusuf, I. Z., & Tahir, F. (2011). Rhizosphere mycology of three maize varieties. Journal of Food, Agriculture & Environment, 9(1), 706-710.

Michel, V. V., Wang, J. ‐F., Midmore, D. J., & Hartman, G. L. (1997). Effects of intercropping and soil amendment with urea and calcium oxide on the incidence of bacterial wilt of tomato and survival of soil‐borne Pseudomonas solanacearum in Taiwan. Plant Pathology, 46(4), 600–610. DOI

Mu, C., Gao, J., Zhou, Z., Wang, Z., Sun, X., Zhang, X., Dong, H., Han, Y., Li, X., Wu, Y., Song, Y., Ma, P., Dong, C., Chen, J., & Wu, J. (2019). Genetic analysis of cob resistance to F. verticillioides: Another step towards the protection of maize from ear rot. Theoretical and Applied Genetics, 132(4), 1049–1059. DOI

Munkvold, G. P. (2003). Epidemiology of Fusarium diseases and their mycotoxins in maize ears. European Journal of Plant Pathology, 109(7), 705-713. DOI

Olanrewaju, O., & Babalola, O. (2019). Bacterial consortium for improved maize (Zea mays L.) production. Microorganisms, 7(11), 519. DOI

Olawuyi, O. J., Odebode, A. C., Olakojo, S. A., Popoola, O. O., Akanmu, A. O., & Izenegu, J. O. (2014). Host–pathogen interaction of maize (Zea mays l.) and Aspergillus niger as influenced by arbuscular mycorrhizal fungi (Glomus deserticola). Archives of Agronomy and Soil Science, 60(11), 1577–1591. DOI

Oldenburg, E., Höppner, F., Ellner, F., & Weinert, J. (2017). Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Research, 33(3), 167-182. DOI

Olowe, O. M., Odebode, A. C., Olawuyi, O. J., & Sobowale, A. A. (2017). Molecular variability of Fusarium verticillioides (Sacc.) in maize from three agro-ecological zones of Southwest Nigeria. American Journal of Molecular Biology, 7(01), 30-40. DOI

Omotayo, O. P., & Babalola, O. O. (2023). Fusarium verticillioides of maize plant: Potentials of propitious phytomicrobiome as biocontrol agents. Frontiers in Fungal Biology, 4, 1095765. DOI

Omotayo, O. P., Omotayo, A. O., Mwanza, M., & Babalola, O. O. (2019). Prevalence of mycotoxins and their consequences on human health. Toxicological Research, 35(1), 1–7. DOI

Oriyomi, I. L., Sobowale, A. A., Akanmu, A. O., & Odebode, A. C. (2019). Evaluation of the phenol production potential in maize (Zea mays L.) in response to infection caused by Fusariun verticillioides (Niren.). Journal of Experimental Agriculture International, 1–11. DOI

Picot, A., Atanasova-Pénichon, V., Pons, S., Marchegay, G., Barreau, C., Pinson-Gadais, L., Roucolle, J., Daveau, F., Caron, D., & Richard-Forget, F. (2013). Maize kernel antioxidants and their potential involvement in Fusarium ear rot resistance. Journal of Agricultural and Food Chemistry, 61(14), 3389–3395. DOI

Reid, L., Hamilton, R., & Mather, D. (1996). Screening maize for resistance to Gibberella ear rot. Agriculture and Agri-Food Canada Tech. Bull. 1996-195E. Agriculture and Agri-Food Canada, Ottawa, ON.

Setimela, P., Gasura, E., Thierfelder, C., Zaman-Allah, M., Cairns, J. E., & Boddupalli, P. M. (2018). When the going gets tough: Performance of stress tolerant maize during the 2015/16 (El Niño) and 2016/17 (La niña) season in southern Africa. Agriculture, Ecosystems & Environment, 268, 79–89. DOI

Sobowale, A. A., Aduramigba, A. O., & Egberongbe, H. O. (2013). Possible association levels between fertilizer (300 kg/ha NPK) application and fungal incidence and viability of stored maize seeds. Journal of Plant Pathology and Microbiology, 4(2), 163. DOI

Venturini, G., Assante, G., Toffolatti, S. L., & Vercesi, A. (2013). Pathogenicity variation in Fusarium verticillioides populations isolated from maize in northern Italy. Mycoscience, 54(4), 285–290. DOI

Wakulinski, W., Wit, M., Warzecha, R., Ochodzki, P., Waskiewicz, A., & Jablońska, E. (2012). Susceptibility of maize varieties to opposite mating type strains of Fusarium verticillioides. Maydica, 57(1), 19-25.




DOI: http://doi.org/10.17503/agrivita.v47i1.3917

Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.