Optimization of Aquaponic Lettuce Evapotranspiration Based on Artificial Photosynthetic Light Properties Using Hybrid Genetic Programming and Moth Flame Optimizer
Abstract
Keywords
Full Text:
PDFReferences
Bautista, M., Alejandrino, J., Alajas, O., Mendigoria, C., Concepcion R., Dadios, E., Bandala, A., & Vicerra, R. (2022). 8-10-Gene Expression-Based aquaponic lettuce evapotranspiration optimization based on photosynthetic light properties. Proceedings of the International Conference on Intelligent Computing & Optimization (ICO2022), 674 – 685. DOI
Benke, K., & Tomkins, B. (2017). Future food-production systems: Vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy, 13(1), 13–26. DOI
Cammarisano, L., Donnison, I. S., & Robson, P. R. H. (2019). Producing enhanced yield and nutritional pigmentation in Lollo Rosso through manipulating the irradiance, duration, and periodicity of LEDs in the visible region of light. Frontiers in Plant Science, 11, 2019. DOI
Camejo, D., Frutos, A., Mestre, T. C., del Carmen Piñero, M., Rivero, R. M., & Martínez, V. (2020). Artificial light impacts the physical and nutritional quality of lettuce plants. Horticulture Environment and Biotechnology, 61(1), 69–82. DOI
Chen, X. li, Wang, L. chun, Li, T., Yang, Q. chang, & Guo, W. zhong. (2019). Sugar accumulation and growth of lettuce exposed to different lighting modes of red and blue LED light. Scientific Reports, 9(1). DOI
Chen, X. li, Yang, Q. chang, Song, W. pin, Wang, L. chun, Guo, W. zhong, & Xue, X. zhang. (2017). Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Scientia Horticulturae, 223, 44–52. DOI
Concepcion, R., Dadios, E., Bandala, A., Cuello, J., & Kodama, Y. (2021). Hybrid genetic programming and multiverse-based optimization of pre-harvest growth factors of aquaponic lettuce based on chlorophyll concentration. International Journal on Advanced Science, Engineering and Information Technology, 11(6), 2128–2138. DOI
Darwish, A. (2018). Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications. Future Computing and Informatics Journal, 3(2), 231–246. DOI
Esmaili, M., Aliniaeifard, S., Mashal, M., Vakilian, K. A., Ghorbanzadeh, P., Azadegan, B., Seif, M., & Didaran, F. (2021). Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations. Agricultural Water Management, 258, 107201. DOI
Ghorbanzadeh, P., Aliniaeifard, S., Esmaeili, M., Mashal, M., Azadegan, B., & Seif, M. (2020). Dependency of Growth, water use efficiency, chlorophyll fluorescence, and stomatal characteristics of lettuce plants to light intensity. Journal of Plant Growth Regulation, 40(5), 2191–2207. DOI
Hang, T., Lu, N., Takagaki, M., & Mao, H. (2019). Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Scientia Horticulturae, 252, 113–120. DOI
Izzo, L. G., Mickens, M. A., Aronne, G., & Gómez, C. (2021). Spectral effects of blue and red light on growth, anatomy, and physiology of lettuce. Physiologia Plantarum, 172(4), 2191–2202. DOI
Ke, X., Yoshida, H., Hikosaka, S., & Goto, E. (2021). Optimization of photosynthetic photon flux density and light quality for increasing radiation-use efficiency in dwarf tomato under LED light at the vegetative growth stage. Plants, 11(1), 121. DOI
Kump, B. (2020). The role of far-red light (FR) in photomorphogenesis and its use in greenhouse plant production. Acta Agriculturae Slovenica, 116(1), 93–105. DOI
Kwack, Y., An, S., & Kim, S. K. (2021). Development of growth model for grafted hot pepper seedlings as affected by air temperature and light intensity. Sustainability, 13(11), 5895. DOI
Lee, M. J., Son, K. H., & Oh, M. M. (2016). Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Horticulture, Environment, and Biotechnology, 57(2), 139–147. DOI
Loconsole, D., Cocetta, G., Santoro, P., & Ferrante, A. (2019). Optimization of LED lighting and quality evaluation of Romaine lettuce grown in an innovative indoor cultivation system. Sustainability, 11(3), 841. DOI
Marcos, L., & Mai, K. V. (2020). Light spectra optimization in indoor plant growth for internet of things. Proceedings of the International IOT, Electronics and Mechatronics Conference. DOI
Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249. DOI
Mirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51–67. DOI
Modarelli, G.C., Paradiso, R., Arena, C., De Pascale, S., & Van Labeke, M.-C. (2022). High light intensity from blue-red LEDs enhance photosynthetic performance, plant growth, and optical properties of red lettuce in controlled environment. Horticulturae, 8(2), 114. DOI
Mohamed, S. J., Rihan, H. Z., Aljafer, N., & Fuller, M. P. (2021). The impact of light spectrum and intensity on the growth, physiology, and antioxidant activity of lettuce (Lactuca sativa L.). Plants , 10(10). DOI
Monga, P., Sharma, M., & Sharma, S. K. (2021). A comprehensive meta-analysis of emerging swarm intelligent computing techniques and their research trend. In Journal of King Saud University - Computer and Information Sciences. King Saud bin Abdulaziz University. DOI
National Economic Development Authority. (2017). Updated Philippine Development Plan 2017-2022. Retrieved from website
Périard, Y., Caron, J., Lafond, J. A., & Jutras, S. (2015). Root water uptake by Romaine lettuce in a muck soil: Linking tip burn to hydric deficit. Vadose Zone Journal, 14(6), vzj2014.10.0139. DOI
Tarakanov, I. G., Tovstyko, D. A., Lomakin, M. P., Shmakov, A. S., Sleptsov, N. N., Shmarev, A. N., Litvinskiy, V. A., & Ivlev, A. A. (2022). Effects of light spectral quality on photosynthetic activity, biomass production, and carbon isotope fractionation in lettuce, Lactuca sativa L., Plants. Plants (Basel, Switzerland), 11(3). DOI
Urairi, C., Shimizu, H., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2017). Optimization of light-dark cycles of Lactuca sativa L. in plant factory. Environmental Control in Biology, 55(2), 85–91. DOI
Valenzuela, I., Baldovino, R., Bandala, A., & Dadios, E. (2018). Pre-harvest factors optimization using genetic algorithm for lettuce. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1–4), 159–163. website
Valenzuela, I. C., Baldovino, R. G., Bandala, A. A., & Dadios, E. P. (2017). Optimization of photosynthetic rate parameters using Adaptive Neuro-Fuzzy Inference System (ANFIS). 2017 International Conference on Computer and Applications, 129–134. DOI
Zhangzhong, L., Gao, H., Zheng, W., Wu, J., Li, J., & Wang, D. (2023). Development of an evapotranspiration estimation method for lettuce via mobile phones using machine vision: Proof of concept. Agricultural Water Management, 275, 108003. DOI
Zou, J., Zhou, C. bo, Xu, H., Cheng, R. feng, Yang, Q. chang, & Li, T. (2020). The effect of artificial solar spectrum on growth of cucumber and lettuce under controlled environment. Journal of Integrative Agriculture, 19(8), 2027–2034. DOI
Zou, T., Huang, C., Wu, P., Ge, L., & Xu, Y. (2020). Optimization of artificial light for spinach growth in plant factory based on orthogonal test. Plants, 9(4), 490. DOI
DOI: http://doi.org/10.17503/agrivita.v45i2.3786
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.