Preparations Use Based on Bacteria of the Genus Bacillus to Increase the Yield of Oats (Avena sativa L.)

Andrei V. Platonov, Irina I. Rassokhina, Georgii Yu. Laptev, Vladislav N. Bolshakov

Abstract


The work studies the effect of microbiological preparations based on the culture of B. subtilis and B. megaterium on the growth processes, photosynthetic parameters, and grain productivity of oats. Field tests were conducted in 2019 in the conditions of a micro plot experiment in the North-West of Russia. Microbiological preparations were introduced by soaking seeds and treating plants in the third leaf stage with preparations of 1 ml/l.The research finds that the introduction of microbiological preparations leads to a significant increase in growth. In the tillering stage, the leaf surface area of the experimental plants was higher by up to 40.1%, and plants' fresh and dry mass increased by 27.8–58.9%. Introducing microbiological preparations increased the average daily increments and the net productivity of plant photosynthesis by 1.080–2.801 g/m2. By the time of harvesting, the mass of the experimental plants remained higher by 13.4–23.3%. The studied preparations increased the grain productivity of oats by up to 16.3% compared to the control. The study indicated a positive effect of microbiological preparations based on B. subtilis and B. megaterium strains on oats.


Keywords


Grain productivity; Microbiological preparations; Morphological indicators; Oat; Photosynthetic indicators

Full Text:

PDF

References


Arkhipova, T. N., Veselov, S. U., Melentiev, A. I., Martynenko, E. V., & Kudoyarova, G. R. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil, 272, 201–209. DOI

Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. DOI

Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B., & Shen, Q. (2011). Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biology and Fertility of Soils, 47, 495–506. DOI

Chebotar’, V. K., Zaplatkin, A. N., Shcherbakov, A. V., Mal’fanova, N. V., Startseva, A. A., & Kostin, Ya. V. (2016). Microbial preparations on the basis of endophytic and rhizobacteria to increase the productivity in vegetable crops and spring barley (Hordeum vulgare L.), and the mineral fertilizer use efficiency. Agricultural Biology, 51(3), 335–342. DOI

De Faria, M. R., Costa, L. S. A. S., Chiaramonte, J. B., Bettiol, W., & Mendes, R. (2021). The rhizosphere microbiome: functions, dynamics, and role in plant protection. Tropical Plant Pathology, 46, 13–25. DOI

De Souza Vandenberghe, L. P., Garcia, L. M. B., Rodrigues, C., Camara, M. C., de Melo Pereira, G. V., de Oliveira, J., & Soccol, C. R. (2017). Potential applications of plant probiotic microorganisms in agriculture and forestry. AIMS Microbiology, 3(3), 629-648. DOI

dos Santos, A. F., Corrêa, B. O., Klein, J., Bono, J. A. M., Pereira, L. C., Guimarães, V. F., & Ferreira, M. B. (2021). Biometrics and nutritional status of white oat (Avena sativa L.) culture under Bacillus subtilis and B. megaterium inoculation. Research, Society and Development, 10(5), e53410515270. DOI

Dunyashev, T. P., Laptev, G. Yu., Yildirim, E. A., Ilina, L. A., Filippova, V. A., Tiurina, D. G., … Platonov, A. V. (2021). Identification of genes associated with the synthesis of siderophores by the Bacillus subtilis. Journal of Livestock Science, 12(4), 287–291. DOI

Dunyashev, T., Laptev, G., Yildirim, E., Ilina, L., Filippova, V., Tiurina, D., … Platonov, A. (2022). Analysis of the potential associated with the siderophores synthesis in the Bacillus subtilis strain using whole genome sequencing. In A. Muratov, & S. Ignateva (Eds.), Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2021). Lecture Notes in Networks and Systems, 354, 663-669. Cham: Springer. DOI

Efthimiadou, A., Katsenios, N., Chanioti, S., Giannoglou, M., Djordjevic, N., & Katsaros, G. (2020). Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Scientific Reports, 10, 21060. DOI

Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, 963401. DOI

Kang, S.-M., Radhakrishnan, R., You, Y.-H., Joo, G.-J., Lee, I.-J., Lee, K.-E., & Kim, J.-H. (2014). Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian Journal of Microbiology, 54, 427–433. DOI

Katsenios, N., Andreou, V., Sparangis, P., Djordjevic, N., Giannoglou, M., Chanioti, S., … Efthimiadou, A. (2021). Evaluation of plant growth promoting bacteria strains on growth, yield and quality of industrial tomato. Microorganisms, 9(10), 2099. DOI

Lim, J.-H., & Kim, S.-D. (2009). Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. Journal of the Korean Society for Applied Biological Chemistry, 52, 531–538. DOI

Liu, F., Xing, S., Ma, H., Du, Z., & Ma, B. (2013). Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Applied Microbiology and Biotechnology, 97, 9155–9164. DOI

Long, S. P., Marshall-Colon, A., & Zhu, X.-G. (2015). Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 161(1), 56–66. DOI

López-Bucio, J., Campos-Cuevas, J. C., Hernández-Calderón, E., Velásquez-Becerra, C., Farías-Rodríguez, R., Macías-Rodríguez, L. I., & Valencia-Cantero, E. (2007). Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 20(2), 207–217. DOI

Mameev, V. V., Pavlovskaya, N. E., Timakov, A. G., & Yakovleva, I. V. (2019). The study of the effectiveness of the use of biological products for photosynthetic activity and the harvest of spring barley. Vestnik Irgsha, 90, 44–55 (in Russian). Retrieved from website

Minaeva, O. M., Akimova, E. E., Tereshchenko, N. N., Kravets, A. V., Zyubanova, T. I., & Apenysheva, M. V. (2019). Pseudomonads associated with soil lumbricides as promising agents in root rot biocontrol for spring grain crops. Agricultural Biology, 54(1), 91–100. DOI

Mishina, O. S., Belopukhov, S. L., & Prusakova, L. D. (2010). Physiological bases for the application of zircon and carvitol growth regulators to increase the productivity of buckwheat. Agrokhimiya, 1, 42–54 (in Russian). Retrieved from website

Ortíz-Castro, R., Valencia-Cantero, E., & López-Bucio, J. (2008). Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling & Behavior, 3(4), 263–265. DOI

Pishchik, V. N., Filippova, P. S., Mirskaya, G. V., Khomyakov, Y. V., Vertebny, V. E., Dubovitskaya, V. I., … Chebotar, V. K. (2021). Epiphytic PGPB Bacillus megaterium AFI1 and Paenibacillus nicotianae AFI2 improve wheat growth and antioxidant status under Ni stress. Plants, 10(11), 2334. DOI

Pryadkina, G. A. (2018). Pigments, photosynthesis efficiency and wheat productivity. Plant Varieties Studying and Protection, 14(1), 97–108 (in Russian). DOI

Raddadi, N., Belaouis, A., Tamagnini, I., Hansen, B. M., Hendriksen, N. B., Boudabous, A., … Daffonchio, D. (2009). Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. Journal of Basic Microbiology, 49(3), 293–303. DOI

Raddadi, N., Cherif, A., Boudabous, A., & Daffonchio, D. (2008). Screening of plant growth promoting traits of Bacillus thuringiensis. Annals of Microbiology, 58, 47–52. DOI

Rashid, U., Yasmin, H., Hassan, M. N., Naz, R., Nosheen, A., Sajjad, M., … Ahmad, P. (2022). Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Reports, 41, 549–569. DOI

Rassokhina, I. I., Platonov, A. V., Laptev, G. Y., & Bolshakov, V. N. (2020). Morphophysical reaction of Hordeum vulgare to the influence of microbial preparations. Regulatory Mechanisms in Biosystems, 11(2), 220–225. DOI

Rout, M. E., Chrzanowski, T. H., Westlie, T. K., DeLuca, T. H., Callaway, R. M., & Holben, W. E. (2013). Bacterial endophytes enhance competition by invasive plants. American Journal of Botany, 100(9), 1726–1737. DOI

Samaniego-Gámez, B. Y., Garruña, R., Tun-Suárez, J. M., Kantun-Can, J., Reyes-Ramírez, A., & Cervantes-Díaz, L. (2016). Bacillus spp. inoculation improves photosystem II efficiency and enhances photosynthesis in pepper plants. Chilean Journal of Agricultural Research, 76(4), 409-416. DOI

Santoyo, G., del Carmen Orozco-Mosqueda, C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Science and Technology, 22(8), 855–872. DOI

Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92-99. DOI

Seregina, I. I., Shumilin, A. O., Vigilyansky, Yu M., Belopukhov, S. L., Grishina, Ye A., Tsygutkin, A. S., … Litvinskiy, V. A. (2018). The formation of grain yield and quality indicators of white lupine (Lupinus albus L.) when using sodium selenite. Agrokhimiya, 7, 73–80 (in Russian). DOI

Shi, Y., Lou, K., & Li, C. (2010). Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynthesis Research, 105, 5–13. DOI

Sinegovskaya, V. T., Xiaomei, J., & Sukhorukov, V. P. (2009). Photosynthesis activation and soybean yield with the integrated use of sodium humate. Bulletin of Altai State Agrarian University, 10(60), 31–35 (in Russian). Retrieved from website

Stefan, M., Munteanu, N., Stoleru, V., Mihasan, M., & Hritcu, L. (2013). Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Scientia Horticulturae, 151, 22–29. DOI

Titova, J. A., Novikova, I. I., Boykova, I. V., Pavlyushin, V. A., & Krasnobaeva, I. L. (2019). Novel solid-phase multibiorecycled biologics based on Bacillus subtilis and Trichoderma asperellum as effective potato protectants against Phytophthora disease. Agricultural Biology, 54(5), 1002–1013. DOI

Vorob'yev, V. N., Nevmerzhitskaya, U. U., Khusnetdinova, L. Z., & Yakushenkova, T. P. (2013). Workshop on plant physiology: teaching aid. Kazan: Kazan University (in Russian). Retrieved from PDF

Zavalin, A. A., Chebotar', V. K., Aritkin, A. G., & Smetov, D. B. (2012). Biologization of mineral fertilizers as a way to increase the efficiency of their use. Dostizheniye nauki i tekhniki APK, 8, 45–47 (in Russian). Retrieved from PDF

Zhang, H., Xie, X., Kim, M.‐S., Kornyeyev, D. A., Holaday, S., & Paré, P. W. (2008). Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. The Plant Journal, 56(2), 264–273 DOI

Zou, C., Li, Z., & Yu, D. (2010). Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. The Journal of Microbiology, 48, 460–466. DOI




DOI: http://doi.org/10.17503/agrivita.v45i1.3757

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.