Characteristics of Virus Symptoms in Chili Plants (Capsicum frutescens) Based on RGB Image Analysis
Abstract
Virus infection in chili plants may cause various symptoms. The complexity of the symptoms and human vision ability often become limiting factors during disease investigations. Digital image analysis is expected to become a method to assist in comprehensively describing the symptoms of plant viruses. A disease survey was conducted on cayenne pepper fields in Southeast Sulawesi Province to observe symptoms of virus infection virtually and to record the symptomatic plant using an RGB camera. The split-channel method is used to process images, followed by multidimensional scaling statistical analysis. Later on, viruses associated with plants were detected serologically. Single or mixed infection of Tobacco mosaic virus, Cucumber mosaic virus, Chili veinal mottle virus, and Pepper mottle virus was confirmed by plant leaves showing yellow-mosaic and mottle symptoms. The digital image analysis method could show variations in the characteristics of symptoms based on digital numbers in that cannot be recognized based on the observation of visual symptoms. A new approach to study the interactions between plant infecting viruses and their effects based on image analysis has also been developed during this research. This method needs to be further validated through testing under controlled conditions, such as inoculating plants with a predetermined type of virus.
Keywords
Full Text:
PDFReferences
Alazem, M., & Lin, N. S. (2015). Roles of plant hormones in the regulation of host-virus interactions. Molecular Plant Pathology, 16(5), 529–540. DOI
Alcaide, C., Rabadán, M. P., Moreno-Pérez, M. G., & Gómez, P. (2020). Implications of mixed viral infections on plant disease ecology and evolution. Advances in Virus Research, 106, 145–169. DOI
Alves, K. S., Guimarães, M., Ascari, J. P., Queiroz, M. F., Alfenas, R. F., Mizubuti, E. S. G., & Del Ponte, E. M. (2022). RGB-based phenotyping of foliar disease severity under controlled conditions. Tropical Plant Pathology, 47(1), 105–117. DOI
Ananthu, N., & Umamaheswaran, K. (2019). Effect of viral infection on carbohydrate and chlorophyll contents in Ginger (Zingiber officinale Rosc.). International Journal of Current Microbiology and Applied Sciences, 8(6), 862–867. DOI
Asfarian, A., Herdiyeni, Y., Rauf, A., & Mutaqin, K. H. (2014). A computer vision for rice disease identification to support integrated pest management. Crop Protection, 61, 103–104. DOI
Bhujel, A., Khan, F., Basak, J. K., Jaihuni, M., Sihalath, T., Moon, B.-E., … & Kim, H.-T. (2022). Detection of gray mold disease and its severity on strawberry using deep learning networks. Journal of Plant Diseases and Protection, 129(3), 579–592. DOI
Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29(2), 59–107. DOI
Chen, P., Buss, G. R., & Tolin, S. A. (2004). Reaction of soybean to single and double inoculation with different Soybean mosaic virus strains. Crop Protection, 23(10), 965–971. DOI
Cordon, G., Andrade, C., Barbara, L., & Romero, A. M. (2022). Early detection of tomato bacterial canker by reflectance indices. Information Processing in Agriculture, 9(2), 184–194. DOI
Damayanti, T. A., & Mahar, A. W. (2015). Teknik tissue blot immunobinding assay dan RT-PCR langsung RNA BCMV dari nitrocellulose membrane (NCM). Paper presented at Prosiding Seminar Nasional Perlindungan Tanaman II “Strategi Perlindungan Tanaman dalam Memperkuat Sistem Pertanian Nasional Menghadapi ASEAN Free Trade Area (AFTA) dan ASEAN Economic Community (AEC) 2015” (pp. 316–322). Bogor: Institut Pertanian Bogor. Retrieved from website
Damiri, N. (2014). Mixed viral infection and growth stage on chilli (Capsicum annuum L.) production. Pertanika Journal of Tropical Agricultural Science, 37(2), 275–283. Retrieved from website
Devisurya, V., Devi Priya, R., & Anitha, N. (2022). Early detection of major diseases in turmeric plant using improved deep learning algorithm. Bulletin of the Polish Academy of Sciences: Technical Sciences, 70(2), e140689. DOI
Dey, A. K., Sharma, M., & Meshram, M. R. (2016). An analysis of leaf chlorophyll measurement method using chlorophyll meter and image processing technique. Procedia Computer Science, 85, 286–292. DOI
Guendouz, A., Bendada, H., & Benniou, R. (2022). A comparative study of chlorophyll content estimation in barley (Hordeum vulgare L.) genotypes based on RGB (Red, Green, Blue) image analysis. Agricultural Science Digest, 42(1), 68–71. DOI
Hasan, A., Widodo, Mutaqin, K. H., Taufik, M., & Hidayat, S. H. (2021). Metode single image-NDVI untuk deteksi dini gejala mosaik pada Capsicum annuum. Jurnal Fitopatologi Indonesia, 17(1), 9–18. DOI
Hidayat, S. H., Haryadi, D., & Nurhayati, E. (2009). Use of serological-based assay for the detection of Pepper yellow leaf curl Indonesia virus. The Plant Pathology Journal, 25(4), 328–332. DOI
Huang, Y., Ma, Q., Wu, X., Li, H., Xu, K., Ji, G., … Liu, C. (2022). Estimation of chlorophyll content in Brassica napus based on unmanned aerial vehicle images. Oil Crop Science, In Press. DOI
Hull, R. (2014). Plant Virology (5th ed.). Academic Press. DOI
Kesumawati, E., Okabe, S., Homma, K., Fujiwara, I., Zakaria, S., Kanzaki, S., & Koeda, S. (2019). Pepper yellow leaf curl Aceh virus: a novel bipartite begomovirus isolated from chili pepper, tomato, and tobacco plants in Indonesia. Archives of Virology, 164(9), 2379–2383. DOI
Kitchen, N. R., & Goulding, K. W. T. (2001). On-farm technologies and practices to improve nitrogen use efficiency. In R. F. Follett & J. L. Hatfield (Eds.), Nitrogen in the Environment: Sources, Problems and Management (pp. 335–369). Amsterdam: Elsevier. DOI
Koeda, S., Mori, N., Horiuchi, R., Watanabe, C., Nagano, A. J., & Shiragane, H. (2022). PepYLCIV and PepYLCAV resistance gene Pepy-2 encodes DFDGD-Class RNA-dependent RNA polymerase in Capsicum. Theoretical and Applied Genetics, 135(7), 2437–2452. DOI
Krishnan, V. G., Deepa, J., Rao, P. V., Divya, V., & Kaviarasan, S. (2022). An automated segmentation and classification model for banana leaf disease detection. Journal of Applied Biology and Biotechnology, 10(1), 213–220. DOI
Kuska, M. T., Heim, R. H. J., Geedicke, I., Gold, K. M., Brugger, A., & Paulus, S. (2022). Digital plant pathology: a foundation and guide to modern agriculture. Journal of Plant Diseases and Protection, 129(3), 457–468. DOI
Lei, R., Jiang, H., Hu, F., Yan, J., & Zhu, S. (2017). Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. Plant Cell Reports, 36(2), 327–341. DOI
Lin, N. S., Hsu, Y. H., & Hsu, H. T. (1990). Immunological detection of plant viruses and a mycoplasmalike organisme by direct tissue blotting on nitrocellulose membranes. Phytopathology, 80(9), 824–828. DOI
Ma, J., Du, K., Zheng, F., Zhang, L., & Sun, Z. (2019). A segmentation method for processing greenhouse vegetable foliar disease symptom images. Information Processing in Agriculture, 6(2), 216–223. DOI
Mascia, T., & Gallitelli, D. (2016). Synergies and antagonisms in virus interactions. Plant Science, 252, 176–192. DOI
Moreno, A. B., & López-Moya, J. J. (2020). When viruses play team sports: mixed infections in plants. Phytopathology, 110(1), 29–48. DOI
Murphy, J. F., & Bowen, K. L. (2006). Synergistic disease in pepper caused by the mixed infection of Cucumber mosaic virus and Pepper mottle virus. Phytopathology, 96(3), 240–247. DOI
Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S., & Kwasniewski, M. T. (2021). Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors, 21(3), 742. DOI
Nilsson, H.-E. (1995). Remote sensing and image analysis in plant pathology. Annual Review of Phytopathology, 33, 489–528. DOI
Osterbaan, L. J., & Fuchs, M. (2019). Dynamic interactions between plant viruses and their hosts for symptom development. Journal of Plant Pathology, 101(4), 885–895. DOI
Paudel, D. B., & Sanfaçon, H. (2018). Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Frontiers in Plant Science, 9(1575), 1–20. DOI
Peng, Y., Dallas, M. M., Ascencio-Ibáñez, J. T., Hoyer, J. S., Legg, J., Hanley-Bowdoin, L., … Yin, H. (2022). Early detection of plant virus infection using multispectral imaging and spatial–spectral machine learning. Scientific Reports, 12, 3113. DOI
Pohan, N. S., Alfan, G., Khalil, M., Bahagia, P., Hayati, R., Haidar, Y., … Koeda, S. (2022). Pepper (Capsicum annuum) plants harboring the Begomovirus resistance gene Pepy-1 show delayed symptom progress and high productivity under natural field conditions. The Horticulture Journal, 1–11. DOI
Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1–13. DOI
Saranya, P., Karthick, S., & Thulasiyammal, C. (2014). Image processing method to measure the severity of fungi. International Journal of Advanced Research, 2(2), 95–100. Retrieved from website
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. DOI
Senesi, G. S., De Pascale, O., Marangoni, B. S., Caires, A. R. L., Nicolodelli, G., Pantaleo, V., & Leonetti, P. (2022). Chlorophyll fluorescence imaging (CFI) and laser-induced breakdown spectroscopy (LIBS) applied to investigate tomato plants infected by the root knot nematode (RKN) Meloidogyne incognita and tobacco plants infected by Cymbidium ringspot virus. Photonics, 9(9), 627. DOI
Shankar, D. R. (2017). Digital image processing. In Remote Sensing of Soils (pp. 117–165). Heidelberg: Springer. DOI
Sharath, D. M., Akhilesh, S., Kumar, A., Rohan, M. G., & Prathap, C. (2019). Image based plant disease detection in pomegranate plant for bacterial blight. Paper presented at 2019 International Conference on Communication and Signal Processing (ICCSP) (pp. 645–649). Chennai, India: IEEE. DOI
Singhal, P., Un Nabi, S., Yadav, M. K., & Dubey, A. (2020). Mixed infection of plant viruses: diagnostics, interactions and impact on host. Journal of Plant Diseases and Protection, 128, 353–368. DOI
Soni, S. K., Mishra, M. K., Mishra, M., Kumari, S., Saxena, S., Shukla, V., … Shirke, P. (2022). Papaya leaf curl virus (PaLCuV) infection on papaya (Carica papaya L.) plants alters anatomical and physiological properties and reduces bioactive components. Plants, 11(5), 579. DOI
Suastika, G., Hartono, S., Nyana, I D. N., & Natsuaki, T. (2012). Laporan pertama tentang infeksi Polerovirus pada tanaman cabai di daerah Bali, Indonesia. Jurnal Fitopatologi Indonesia, 8(5), 151–154. DOI
Subekti, D., Hidayat, S. H., Nurhayati, E., & Sujiprihati, S. (2006). Infeksi Cucumber mosaic virus dan Chili veinal mottle virus terhadap pertumbuhan dan hasil tanaman cabai. HAYATI Journal of Biosciences, 13(2), 53–57. DOI
Tatineni, S., Alexander, J., & Qu, F. (2022). Differential synergistic interactions among four different wheat-infecting viruses. Frontiers in Microbiology, 12, 800318. DOI
Taufik, M., Khaeruni, A., & Rombe, W. S. L. (2011). Penggunaan ELISA untuk mendeteksi Cucumber mosaic virus dan Tobacco mosaic virus pada tanaman cabai. Fitomedika, 7(3), 195–200. Retrieved from PDF
Xu, Y., Ghanim, M., & Liu, Y. (2022). Editorial: mixed infections of plant viruses in nature and the impact on agriculture. Frontiers in Microbiology, 13, 922607. DOI
Zanini, A. A., Di Feo, L., Luna, D. F., Paccioretti, P., Collavino, A., & Rodriguez, M. S. (2021). Cassava common mosaic virus infection causes alterations in chloroplast ultrastructure, function, and carbohydrate metabolism of cassava plants. Plant Pathology, 70(1), 195–205. DOI
Zhao, J., Zhang, X., Hong, Y., & Liu, Y. (2016). Chloroplast in plant-virus interaction. Frontiers in Microbiology, 7, 1565. DOI
DOI: http://doi.org/10.17503/agrivita.v41i0.3731
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.