Potency and Diversity of Fungi on Pine Litter and Rhizosphere in Different Land-use of Universitas Brawijaya (UB) Forest

Rina Rachmawati, Akhmad Rizali, Abdul Latief Abadi, Luqman Qurata Aini, Hagus Tarno, Muhammad Febriansyah, Theresia Rani Kartika Ayu

Abstract


The agroforestry system with its diversity of vegetation has the potential on the existence of antagonistic and entomopathogen fungi. This study was conducted to evaluate the diversity of antagonistic fungi and entomopathogen fungi in the rhizosphere and pine leaf litters on pine monoculture and intercropping pine - coffee. The research was started from plot determination, sampling, fungal identification, antagonist test and pathogenicity test. The results of isolation of fungi from pine leaf litter on monoculture pine and intercropping pine-coffee fields obtained 17 genus of fungi. In monoculture pine, there 9 genus of fungi were found, while other 4 were still unidentified. In pine-coffee intercropping land 13 genus were observed. Based on the potential and bility tests, Acremonium sp. 3 and Penicillium sp. 2 has the highest inhibiton capacity, while isolate Paecilomyces sp. 1 and Paecilomyces sp. 2 had the best level of pathogenicity and mortality. Temperature and humidity did not affect the diversity of fungi. The diversity of entompathogenic and antagonistic fungi was higher in the pine-coffee intercropping land use. The litter plots had higher fungal diversity than the rhizosphere.

Keywords


Antagonistic Fungi; Entomopathogenic Fungi; Mortality; Pathogenicity

Full Text:

PDF

References


Abbott, W. S. (1987). A method of computing the effectiveness of an insecticide. Journal of the American Mosquito Control Association, 3(2), 302-303. DOI

Baker, K. F., & Cook, R. J. (1982). Biological control of plant pathogens (2nd ed.). Minnessota: The American Phytopathology Society. Retrieved from website

Brito-Vega, H., Espinosa-Victoria, D., Salaya-Domínguez, J. M., & Gómez-Méndez, E. (2013). The soil biota: Importance in agroforestry and agricultural systems. Tropical and Subtropical Agroecosystems, 16(3), 445-453. Retrieved from PDF

Bustillo, A. E., Bernal, M. G., Benavides, P., & Chaves, B. (1999). Dynamics of Beauveria bassiana and Metarhizium anisopliae infecting Hypothenemus hampei (Coleoptera: Scolytidae) populations emerging from fallen coffee berries. Florida Entomologist, 82(4), 491–498. DOI

Effendy, T. A., Robby, S., Abdullah, S., & Abdul, M. (2010). Jamur entomo-patogen asal tanah lebak Sumatera Selatan dan potensinya sebagai agens hayati walang sangit (Leptocorisa oratorius F.). Jurnal HPT Tropika, 10(2), 154-161. DOI

Frac, M., Hannula, S. E., Belka, M., & Jȩdryczka, M. (2018). Fungal biodiversity and their role in soil health. Frontiers in Microbiology, 9, 1–9. DOI

Fracetto, G. G. M., Azevedo, L. C. B., Fracetto, F. J. C., Andreote, F. D., Lambais, M. R., & Pfenning, L. H. (2013). Impact of amazon land use on the community of soil fungi. Scientia Agricola, 70(2), 59–67. DOI

Gabriel, B. P., & Riyatno. (1989). Metarhizium anisopliae (Metch) Sor: Taksonomi, patologi, produksi, dan aplikasinya. Jakarta: Direktorat Perlindungan Tanaman Perkebunan, Departemen Pertanian.

Harman, G., Khadka, R., Doni, F., & Uphoff, N. (2021). Benefits to plant health and productivity from enhancing plant microbial symbionts. Frontiers in Plant Science, 11, 610065. DOI

Heilmann-Clausen, J., Aude, E., van Dort, K., Christensen, M., Piltaver, A., Veerkamp, M., … Òdor, P. (2014). Communities of wood-inhabiting bryophytes and fungi on dead beech logs in Europe – reflecting substrate quality or shaped by climate and forest conditions? Journal of Biogeography, 41, 2269-2282. DOI

Hooper, D. U., Bignell, D. E., Brown, V. K., Brussaard, L., Dangerfield, J. M., Wall, D. H., … van der Putten, W. H. (2001). Linking above and below-ground biodiversity: Abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land. Functional Ecology, 15(4), 506-514. DOI

Huang, W., Tang, R., Li, S., Zhang, Y., Chen, R., Gong, L., … Ling, E. (2021). Involvement of epidermis cell proliferation in defense against Beauveria bassiana infection. Frontiers in Immunology, 12, 1-12. DOI

Ilyas, M. (2007). Isolasi dan identifikasi mikoflora kapang pada sampel serasah daun tumbuhan di kawasan Gunung Lawu, Surakarta, Jawa Tengah. Biodiversitas, 8(2), 105-110. DOI

Johnson, L. A. (1957). Effect of antibiotics on the number of bacteria and fungi isolated from soil by dilution plate method. Phytopathology, 47, 21-22.

Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 1–19. DOI

Li, X., Liu, Q., Lewis, E. E., & Tarasco, E. (2016). Activity changes of antioxidant and deoxifying enzymes in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae infected by the entomopathogenic nematode Heterorhabditis beicherriana (Rhabditida: Heterorhabditidae). Parasitology Research, 115(12), 4485-4494. DOI

Liang, L. J., Jeewon, R., Dhandevi, P., Durairajan, S. S. K., Li, H., Lin, F. C., & Wang, H. K. (2021). A novel species of Penicillium with inhibitory effects against Pyricularia oryzae and fungal pathogens inducing citrus diseases. Frontiers in Cellular and Infection Microbiology, 10, 1–10. DOI

Mäkelä, M. R., Aguilar-Pontes, M. V., Van Rossen-Uffink, D., Peng, M., & De Vries, R. P. (2018). The fungus Aspergillus niger consumes sugars in a sequential manner that is not mediated by the carbon catabolite repressor CreA. Scientific Reports, 8(1), 1–8. DOI

Muniroh, M. S., Nusaibah, S. A., Vadamalai, G., & Siddique, Y. (2019). Proficiency of biocontrol agents as plant growth promoters and hydrolytic enzyme producers in Ganoderma boninense infected oil palm seedlings. Current Plant Biology, 20, 1-9. DOI

Ortiz-Urquiza, A., & Keyhani, N. O. (2013). Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects, 4(3), 357–374. DOI

Reese, A. T., Lulow, K., David, L. A., & Wright, J. P. (2018). Plant community and soil conditions individually affect soil microbial community assembly in experimental mesocosms. Ecology and Evolution, 8(2), 1196–1205. DOI

Rishi, R. R., Pandey, S., & Kumar, R. (2016). Management of Heortia vitessoides Moore. A major insect pest of Aquilaria malaccensis Lamk. in North East India. Journal of Entomology and Zoology Studies, 4(6): 335-338. Retrieved from website

Shahid, A. A., Rao, A. Q., Bakshs, A., & Husnain, T. (2012). Entomopathogenic fungi as biological controllers: New insight into their virulance and pathogenicity. Archives of Biological Sciences, 64(1), 21-42. DOI

Sharma, R., & Sharma, P. (2021). Fungal entomopathogens: a systematic review. Egyptian Journal of Biological Pest Control, 31(1), 57. DOI

Sitompul, A. F., Oemry, S., & Pangestiningsih, Y. (2014). Uji efektifitas insektisida nabati terhadap mortalitas Leptocorisa acuta Thunberg. (Hemiptera : Alydidae) pada tanaman padi (Oryza sativa L.) di rumah kaca. Jurnal Online Agroekoteknologi, 2(3), 1075-1080. DOI

Smith, R., & Grula, E. A. (1981). Toxic components on the larvae surface of the corn earworm (Heliothis zea) and their effects on germination and growth of Beauveria bassiana. Journal of Invertebrate Pathology, 36, 15-22. DOI

Sun, B. D., & Liu, X. Z. (2008). Occurrence and diversity of insect associated fungi in natural soils in China. Applied Soil Ecology, 39, 100–108. DOI

Trizelia, Armon, N., & Jailani, H. (2015). Keanekaragaman cendawan entomopatogen pada rizosfer berbagai tanaman sayuran. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 1(5), 998-1004. Retrieved from PDF

Watanabe, T. (2002). Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species (2nd ed.). Boca Raton: CRC Press. DOI

Wicaksono Jati, W., Abadi, A. L., Aini, L. Q., & Djauhari, S. (2022). Screening of Trichoderma spp. isolates based on antagonism and chitinolytic index against Xylaria sp. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 22(1), 55–67. DOI

Widyastuti, S. M. (2007). Peran Thichoderma spp. dalam revitalisasi kehutanan di Indonesia. UG Press. Retrieved from website

Win, T. T., Bo, B., Malec, P., & Fu, P. (2021). The effect of a consortium of Penicillium sp. and Bacillus spp. in suppressing banana fungal diseases caused by Fusarium sp. and Alternaria sp. Journal of Applied Microbiology, 131(4), 1890–1908. DOI




DOI: http://doi.org/10.17503/agrivita.v44i2.3689

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.