Pigmentation and Genotype Effects, Phenotypic Stability for Anthocyanins, Phenolic Compounds and Antioxidant Activity in the Corn Tassel

Prakasit Duangpapeng, Khundej Suriharn, Kamol Lertrat, Khomsorn Lomthaisong, Marvin Paul Scott

Abstract


The tassels of corn can be utilized as a co-product for the production of phytochemicals. The objectives were to assess the impact of pigmentation and genotype on the levels of anthocyanins, phenolic compounds and antioxidant activity, and to determine the phenotypic stability of these traits. Sixteen genotypes were evaluated at two locations over two seasons. Corn genotypes in purple or pink pigmentation group had higher anthocyanin concentration and DPPH radical scavenging activity in tassel than those in normal green group. Tassel color can be used as a selection criterion to improve anthocyanin and antioxidant activity, but the trait is not effective to predict the phenolic concentration in the tassel. Genotype is an important source of variation for all parameters. The sensitivity of corn genotypes with high levels of measured compounds to the environment indicates the importance of choosing suitable locations and seasons for the production of high-quality corn tassels as a co-product of grain and vegetable corn. The findings of this study can be valuable for producers who intend to select genotypes for phytochemical production in corn tassels, as well as to corn breeders who aim to develop improved varieties with high yield and high bioactive phytochemicals in tassel.


Keywords


Adaptability; Colored tassel; Floral corn; Multi-environment trials; Phytochemicals

Full Text:

PDF

References


Aakash, Thakur, N. S., Singh, M. K., Bhayal, L., Meena, K., Choudhary, S. K., … Singh, A. K. (2022). Sustainability in rainfed maize (Zea mays L.) production using choice of corn variety and nitrogen scheduling. Sustainability, 14(5), 3116. DOI

Al-Khayri, J. M., Yüksel, A. K., Yüksel, M., Işık, M., & Dikici, E. (2022). Phenolic profile and antioxidant, anticholinergic, and antibacterial properties of corn tassel. Plants, 11(15), 1899. DOI

Aylor, D. E. (2003). Rate of dehydration of corn (Zea mays L.) pollen in the air. Journal of Experimental Botany, 54(391), 2307–2312. DOI

Cone, K. C., Cocciolone, S. M., Burr, F. A., & Burr, B. (1993). Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. The Plant Cell, 5(12), 1795–1805. DOI

Cone, K. C., Cocciolone, S. M., Moehlenkamp, C. A., Weber, T., Drummond, B. J., Tagliani, L. A., … Perrot, G. H. (1993). Role of the regulatory gene pl in the photocontrol of maize anthocyanin pigmentation. The Plant Cell, 5(12), 1807–1816. DOI

Duangpapeng, P., Ketthaisong, D., Lomthaisong, K., Lertrat, K., Scott, M. P., & Suriharn, B. (2018). Corn tassel: A new source of phytochemicals and antioxidant potential for value-added product development in the agro-industry. Agronomy, 8(11), 242. DOI

Duangpapeng, P., Lertrat, K., Lomthaisong, K., Scott, M. P., & Suriharn, B. (2019). Variability in anthocyanins, phenolic compounds and antioxidant capacity in the tassels of collected waxy corn germplasm. Agronomy, 9(3), 158. DOI

Elsayed, N., Marrez, D. A., Ali, M. A., El-Maksoud, A. A. Abd, Cheng, W., & Abedelmaksoud, T. G. (2022). Phenolic profiling and in-vitro bioactivities of corn (Zea mays L.) tassel extracts by combining enzyme-assisted extraction. Foods, 11(14), 2145. DOI

Fonseca, A. E., & Westgate, M. E. (2005). Relationship between desiccation and viability of maize pollen. Field Crops Research, 94(2-3), 114–125. DOI

Gao-Takai, M., Katayama-Ikegami, A., Matsuda, K., Shindo, H., Uemae, S., & Oyaizu, M. (2019). A low temperature promotes anthocyanin biosynthesis but does not accelerate endogenous abscisic acid accumulation in red-skinned grapes. Plant Science, 283, 165–176. DOI

Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In R. E. Wrolstad, T. E. Acree, H. An, E. A. Decker, M. A. Penner, D. S. Reid, … P. Sporns (Eds.), Current Protocols in Food Analytical Chemistry (pp. F1.2.1–F1.2.13.). New York, US: John Wiley & Sons Inc. DOI

Grotewold, E. (2006). The genetics and biochemistry of floral pigments. Annual Review of Plant Biology, 57(1), 761–780. DOI

Gu, K.-D., Wang, C.-K., Hu, D.-G., & Hao, Y.-J. (2019). How do anthocyanins paint our horticultural products? Scientia Horticulturae, 249, 257–262. DOI

Hu, Q.-P., & Xu, J.-G. (2011). Profiles of carotenoids, anthocyanins, phenolics, and antioxidant activity of selected color waxy corn grains during maturation. Journal of Agricultural and Food Chemistry, 59(5), 2026–2033. DOI

Irani, N. G., & Grotewold, E. (2005). Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells. BMC Plant Biology, 5, 7. DOI

Jaakola, L., & Hohtola, A. (2010). Effect of latitude on flavonoid biosynthesis in plants. Plant, Cell & Environment, 33(8), 1239–1247. DOI

Jing, P., Noriega, V., Schwartz, S. J., & Giusti, M. M. (2007). Effects of growing conditions on purple corncob (Zea mays L.) anthocyanins. Journal of Agricultural and Food Chemistry, 55(21), 8625–8629. DOI

Khampas, S., Lertrat, K., Lomthaisong, K., Simla, S., & Suriharn, B. (2015). Effect of location, genotype and their interactions for anthocyanins and antioxidant activities of purple waxy corn cobs. Turkish Journal of Field Crops, 20(1), 15–23. DOI

Khider, M., Elbanna, K., Mahmoud, A., & Owayss, A. A. (2013). Egyptian honeybee pollen as antimicrobial, antioxidant agents, and dietary food supplements. Food Science and Biotechnology, 22(5), 1461–1469. DOI

Kim, S., Hwang, G., Lee, S., Zhu, J-Y., Paik, I., Nguyen, T. T., … Oh, E. (2017). High ambient temperature represses anthocyanin biosynthesis through degradation of HY5. Frontiers in Plant Science, 8, 1787. DOI

Lu, Y., Lv, J., Hao, J., Niu, Y., Whent, M., Costa, J., & Yu, L. L. (2015). Genotype, environment, and their interactions on the phytochemical compositions and radical scavenging properties of soft winter wheat bran. LWT - Food Science and Technology, 60(1), 277–283. DOI

Lv, J., Lu, Y., Niu, Y., Whent, M., Ramadan, M. F., Costa, J., & Yu, L. L. (2013). Effect of genotype, environment, and their interaction on phytochemical compositions and antioxidant properties of soft winter wheat flour. Food Chemistry, 138(1), 454–462. DOI

Mohsen, S. M., & Ammar, A. S. M. (2009). Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chemistry, 112(3), 595–598. DOI

Oleszek, M., Kowalska, I., Bertuzzi, T., & Oleszek, W. (2023). Phytochemicals derived from agricultural residues and their valuable properties and applications. Molecules, 28(1), 342. DOI

Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., & Estevinho, L. M. (2014). Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 63, 233–239. DOI

Šamec, D., Karalija, E., Šola, I., Vujčić Bok, V., & Salopek-Sondi, B. (2021). The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants, 10(1), 118. DOI

Shah, A., & Smith, D. L. (2020). Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy, 10(8), 1209. DOI

Simla, S., Boontang, S., & Harakotr, B. (2016). Anthocyanin content, total phenolic content, and antiradical capacity in different ear components of purple waxy corn at two maturation stages. Australian Journal of Crop Science, 10(5), 675–682. DOI

Somsana, P., Pattanagul, W., Suriharn, B., & Sanitchon, J. (2013). Stability and genotype by environment interactions for grain anthocyanin content of Thai black glutinous upland rice (Oryza sativa). SABRAO Journal of Breeding and Genetics, 45(3), 523–532. Retrieved from website

van Bilsen, D. G. J. L., Hoekstra, F. A., Crowe, L. M., & Crowe, J. H. (1994). Altered phase behavior in membranes of aging dry pollen may cause imbibitional leakage. Plant Physiology, 104(4), 1193–1199. DOI

Wang, L.-C., Yu, Y.-Q., Fang, M., Zhan, C.-G., Pan, H.-Y., Wu, Y.-N., & Gong, Z.-Y. (2014). Antioxidant and antigenotoxic activity of bioactive extracts from corn tassel. Journal of Huazhong University of Science and Technology [Medical Sciences], 34(1), 131–136. DOI

Wille, J. J., & Berhow, M. A. (2011). Bioactives derived from ripe corn tassels: A possible new natural skin whitener, 4-hydroxy−1-oxindole-3-acetic acid. Current Bioactive Compounds, 7(2), 126–134. DOI

Worrajinda, J., Lertrat, K., & Suriharn, K. (2013). Combining ability of super sweet corn inbred lines with different ear sizes for ear number and whole ear weight. SABRAO Journal of Breeding and Genetics, 45(3), 468–477. Retrieved from website

Xie, X-B., Li, S., Zhang, R-F., Zhao, J., Chen, Y-C., Zhao, Q., … Hao, Y-J. (2012). The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant, Cell & Environment, 35(11), 1884–1897. DOI

Yaman, B. (2022). Medical physiological perspective to biochemical assays and GC-MS results of corn tassel. International Journal of Secondary Metabolite, 9(4), 513–524. DOI

Yang, Z., Fan, G., Gu, Z., Han, Y., & Chen, Z. (2008). Optimization extraction of anthocyanins from purple corn (Zea mays L.) cob using tristimulus colorimetry. European Food Research and Technology, 227(2), 409–415. DOI

Žilić, S., Vančetović, J., Janković, M., & Maksimović, V. (2014). Chemical composition, bioactive compounds, antioxidant capacity and stability of floral maize (Zea mays L.) pollen. Journal of Functional Foods, 10, 65–74. DOI




DOI: http://doi.org/10.17503/agrivita.v45i1.3680

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.