Effect of Pre-Harvest Foliar Calcium and Silicon Fertilization on Pineapple Quality and Fruit Collapse Incidence

Diego Mauricio Cano-Reinoso, Loekas Soesanto, Kharisun Kharisun, Condro Wibowo


Pineapple can be affected by fruit collapse, a disease caused by the bacterium Dickeya zeae. However, adequate fertilization can increase the fruit’s resistance to this illness. Therefore, the impact of preharvest foliar calcium and silicon fertilization on pineapple quality and fruit collapse incidence was assessed in this study. The experiment implemented a split-plot design with two factors. The first factor has two terms of inoculation (flower induction and before harvest). The second factor uses a control with three foliar fertilization treatments, A (control: No foliar fertilizers applied), B (Ca from 13 to 11 weeks before harvest/from 6 weeks to harvest), C (Si from 13 to 11 weeks before harvest/from 6 weeks to harvest), and D (Ca + Si from 13 to 11 weeks before harvest/from 6 weeks to harvest). Treatment D gave the best response. It had the lowest fruit collapse incidence (21.70%), highest ascorbic acid (71.64 mg/kg), elevated β-carotene (4.87 mg/kg) and mineral content (Ca: 1851.10 mg/kg, Si: 1164.87 mg/kg), essentially under the before harvest term of inoculation, which was more harmful for the fruit. In conclusion, mixed foliar calcium and silicon fertilization manage to improve the tolerance to fruit collapse incidence, impacting the pineapple quality positively


Antioxidant; Dickeya zeae; Enzyme; Inoculation; MD2

Full Text:



Aeny, T. N., Suharjo, R., Ginting, C., Hapsoro, D., & Niswati, A. (2020). Characterization and host range assessment of Dickeya zeae associated with pineapple soft rot disease in east Lampung, Indonesia. Biodiversitas, 21(2), 587–595. DOI

Akram, N. A., Shafiq, F., & Ashraf, M. (2017). Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science, 8, 1–5. DOI

Artyszak, A. (2018). Effect of silicon fertilization on crop yield quantity and quality—A literature review in Europe. Plants, 7(3), 54. DOI

Barral, B., Chillet, M., Minier, J., Léchaudel, M., & Schorr-Galindo, S. (2017). Evaluating the response to Fusarium ananatum inoculation and antifungal activity of phenolic acids in pineapple. Fungal Biology, 121(12), 1045–1053. DOI

Bartholomew, D. P., & Sanewski, G. M. (2018). Inflorescence and fruit development and yield. In G. M. Sanewski, D. P. Bartholomew, & R. E. Paull (Eds.), The pineapple: botany, production and uses (pp. 223–268). London, UK: CABI Publishing. DOI

Benton-Jones, J. Jr. (2001). Laboratory guide for conducting soil tests and plant analysis. Boca Raton, USA: CRC Press. Retrieved from website

bin Thalip, A. A., Tong, P. S., & Casey, Ng. (2015). The MD2 "Super Sweet" pineapple (Ananas comosus). Utar Agriculture Science Journal, 1(4), 14–17. Retrieved from PDF

Brancaglione, P., Sampaio, A. C., Fischer, I. H., de Almeida, A. M., & de Fatima Fumis, T. (2009). Analysis of the efficiency of silicate clay on the control of Xanthomonas Axonopodis pv. Passiflorae in vitro and in seedlings of yellow passion fruit contaminated. Revista Brasileira de Fruticultura, 31(3), 718–724. DOI

Cano-Reinoso, D. M., Kharisun, Soesanto, L., & Wibowo, C. (2022). Effect of calcium and silicon fertilization after flowering on pineapple mineral status and flesh translucency. Plant Physiology Reports, 27(1), 96-108. DOI

Cano-Reinoso, D. M., Soesanto, L., Kharisun, & Wibowo, C. (2021a). Review: Fruit collapse and heart rot disease in pineapple: Pathogen characterization, ultrastructure infections of plant and cell mechanism resistance. Biodiversitas, 22(5), 2477–2488. DOI

Cano-Reinoso, D. M., Soesanto, L., Kharisun, & Wibowo, C. (2021b). Effect of pre-harvest fruit covers and calcium fertilization on pineapple thermotolerance and flesh translucency. Emirates Journal of Food and Agriculture, 33(10), 834–845. Retrieved from website

Cao, T., Duncan, R. A., Kirkpatrick, B. C., Shackel, K. A., & DeJong, T. M. (2013). Effect of calcium and nitrogen fertilization on bacterial canker susceptibility in stone fruits. Fruits, 68, 245–254. DOI

Cunha, J. M., Freitas, M. S. M., de Carvalho, A. J. C., Caetano, L. C. S., Vieira, M. E., Peçanha, D. A., … Pinto, L. P. (2021). Pineapple yield and fruit quality in response to potassium fertilization. Journal of Plant Nutrition, 44(6), 865–874. DOI

de Freitas, S. T., & de Cássia Mirela Resende Nassur, R. (2018). Calcium treatments. In S. Pareek (Ed.), Novel post-harvest treatments of fresh produce (pp. 52–68). Boca raton, USA: CRC Press. DOI

de Matos, A. P. (2019). Main pests affecting pineapple plantations and their impact on crop development. Acta Horticulturae, 1239, 137–146. DOI

Ding, P., & Syazwani, S. (2016). Physicochemical quality, antioxidant compounds and activity of MD-2 pineapple fruit at five ripening stages. International Food Research Journal, 23(2), 549–555. Retrieved from PDF

Fanciullino, A. L., Bidel, L. P. R., & Urban, L. (2014). Carotenoid responses to environmental stimuli: Integrating redox and carbon controls into a fruit model. Plant, Cell and Environment, 37(2), 273–289. DOI

Farouk, S. (2011). Ascorbic acid and α-Tocopherol Minimize salt-induced wheat leaf senescence. Journal of Stress Physiology & Biochemistry, 7(3), 58–79. Retrieved from website

Ferreira, H. A., do Nascimento, C. W. A., Datnoff, L. E., de Sousa Nunes, G. H., Preston, W., de Souza, E. B., & de Lima Ramos Mariano, R. (2015). Effects of silicon on resistance to bacterial fruit blotch and growth of melon. Crop Protection, 78, 277–283. DOI

Frew, A., Weston, L. A., Reynolds, O. L., & Gurr, G. M. (2018). The role of silicon in plant biology: A paradigm shift in research approach. Annals of Botany, 121(7), 1265–1273. DOI

Gao, X., Cox Jr, K. L., & He, P. (2014). Functions of calcium-dependent protein kinases in plant innate immunity. Plants, 3(1), 160–176. DOI

Goñi, M. G., Quirós-Sauceda, A. E., Velderrain-Rodríguez, G. R., Ovando-Martínez, M., Roura, S. I., González-Aguilar, G. A., & Pareek, S. (2018). Salicylic acid treatments. In S. Pareek (Ed.), Novel Postharvest Treatments of Fresh Produce (pp. 119–148). Boca raton, USA: CRC Press. DOI

Hanumanthaiah, M. R., Kulapatihipparagi, Vijendrakumar, R. C., Renuka, D. M., Kumar, K. K., & Santhosha, K. V. (2015). Effect of soil and foliar application of silicon on fruit quality parameters of Banana cv. Neypoovan under hill zone. Plant Archives, 15(1), 221–224. Retrieved from PDF

Hocking, B., Tyerman, S. D., Burton, R. A., & Gilliham, M. (2016). Fruit calcium: Transport and physiology. Frontiers in Plant Science, 7, 1–17. DOI

Islam, M. Z., Mele, M. A., Choi, K.-Y., & Kang, H.-M. (2018). The effect of silicon and boron foliar application on the quality and shelf life of cherry tomatoes. Zemdirbyste-Agriculture, 105(2), 159–164. DOI

Javaid, K., & Misgar, F. A. (2018). Effect of foliar application of orthosilicic acid on leaf and fruit nutrient content of apple cv. "Red Delicious". Advance Research Journal of Multi-Disciplinary Discoveries, 20(1), 30–32. Retrieved from PDF

Kandhol, N., Singh, V. P., Peralta-Videa, J., Corpas, F. J., & Tripathi, D. K. (2021). Silica nanoparticles: The rising star in plant disease protection. Trends in Plant Science, 27(1), 7–9. DOI

Katz, O. (2015). Silica phytoliths in angiosperms: Phylogeny and early evolutionary history. New Phytologist, 208(3), 642–646. DOI

Kim, N.-H., Jacob, P., & Dangl, J. L. (2022). Con‐Ca2+‐tenating plant immune responses via calcium‐permeable cation channels. New Phytologist, 234(3), 813–818. DOI

Kleemann, L. (2016). Organic pineapple farming in Ghana - A good choice for smallholders? The Journal of Developing Areas, 50(3), 109–130. Retrieved from website

Laane, H.-M. (2018). The effects of foliar sprays with different silicon compounds. Plants, 7(2), 45. DOI

Liang, Y., Nikolic, M., Bélanger, R., Gong, H., & Song, A. (2015). Silicon in agriculture. Dordrecht, GE: Springer. DOI

Loekito, S., Afandi, Afandi, A., Nishimura, N., Koyama, H., & Senge, M. (2022). The effects of calcium fertilizer sprays during fruit development stage on pineapple fruit quality under humid tropical climate. International Journal of Agronomy, 2022, 1–9. DOI

Lu, X.-H., Sun, D.-Q., Wu, Q.-S., Liu, S.-H., & Sun, G.-M. (2014). Physico-chemical properties, antioxidant activity and mineral contents of pineapple genotypes grown in China. Molecules, 19(6), 8518–8532. DOI

Ma, J.-F., & Yamaji, N. (2015). A cooperative system of silicon transport in plants. Trends in Plant Science, 20(7), 435–442. DOI

Madani, B., Mirshekari, A., Sofo, A., & Tengku Muda Mohamed, M. (2016). Preharvest calcium applications improve post-harvest quality of papaya fruits (Carica papaya L. cv. Eksotika II). Journal of Plant Nutrition, 39(10), 1483–1492. DOI

Morkunas, I., & Ratajczak, L. (2014). The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum, 36(7), 1607–1619. DOI

Murai, K., Chen, N. J., & Paull, R. E. (2021). Pineapple crown and slip removal on fruit quality and translucency. Scientia Horticulturae, 283, 110087. DOI

Naseem, M., Kunz, M., & Dandekar, T. (2017). Plant–pathogen maneuvering over apoplastic sugars. Trends in Plant Science, 22(9), 740–743. DOI

Ngadze, E. (2018). Calcium soil amendment increases resistance of potato to blackleg and soft rot pathogens. African Journal of Food, Agriculture, Nutrition and Development, 18(1): 12975–12991. DOI

Noichinda, S., Bodhipadma, K., & Wongs-Aree, C. (2018). Antioxidant potential and their changes during post-harvest handling of tropical fruits. In S. Pareek (Ed.), Novel postharvest treatments of fresh produce (pp. 633–662). Boca raton, USA: CRC Press. DOI

Owolade, S. O., Akinrinola, A. O., Popoola, F. O., Aderibigbe, O. R., Ademoyegun, O. T., & Olabode, I. A. (2017). Study on physico-chemical properties, antioxidant activity and shelf stability of carrot (Daucus carota) and pineapple (Ananas comosus) juice blend. International Food Research Journal, 24(2), 534–540. Retrieved from PDF

Paull, R. E., & Chen, C.-C. (2018). Postharvest physiology, handling and storage of pineapple. In G. M. Sanewski, D. P. Bartholomew, & R. E. Paull (Eds.), The pineapple: botany, production and uses (pp. 295–323). London, UK: CABI Publishing. DOI

Shamsudin, R., Zulkifli, N. A., & Kamarul Zaman, A. A. (2020). Quality attributes of fresh pineapple-mango juice blend during storage. International Food Research Journal, 27(1), 141–149. Retrieved from PDF

Sipes, B., & de Matos, A. P. (2018). Pests, diseases and weeds. In G. M. Sanewski, D. P. Bartholomew, & R. E. Paull (Eds.), The pineapple: botany, production and uses (pp. 269–294). London, UK: CABI Publishing. DOI

Siti Roha, A. M., Zainal, S., Noriham, A., & Nadzirah, K. Z. (2013). Determination of sugar content in pineapple waste variety N36. International Food Research Journal, 20(4), 1941–1943. Retrieved from PDF

Soteriou, G. A., Kyriacou, M. C., Siomos, A. S., & Gerasopoulos, D. (2014). Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chemistry, 165, 282–289. DOI

Stamatakis, A., Papadantonakis, N., Savvas, D., Lydakis-Simantiris, N., & Kefalas, P. (2003). Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically. Acta Horticulturae, 609, 141–147. DOI

Steingass, C. B., Vollmer, K., Lux, P. E., Dell, C., Carle, R., & Schweiggert, R. M. (2020). HPLC-DAD-APCI-MSn analysis of the genuine carotenoid pattern of pineapple (Ananas comosus [L.] Merr.) infructescence. Food Research International, 127, 108709. DOI

Sueno, W. S. K., Marrero, G., de Silva, A. S., Sether, D. M., & Alvarez, A. M. (2014). Diversity of Dickeya strains collected from pineapple plants and irrigation water in Hawaii. Plant Disease, 98(6), 817–824. DOI

Tale Ahmad, S., & Haddad, R. (2011). Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech Journal of Genetics and Plant Breeding, 47(1), 17–27. DOI

Uthairatanakij, A., Aiamla-or, S., & Jitareerat, P. (2015). Preharvest calcium effects on internal breakdown and quality of 'pattavia' pineapple during low temperature storage. Acta Horticulturae, 1088, 443–448. DOI

Vásquez-Jiménez, J. H., & Bartholomew, D. P. (2018). Plant nutrition. In G. M. Sanewski, D. P. Bartholomew, & R. E. Paull (Eds.), The pineapple: botany, production and uses (pp. 175–202). London, UK: CABI Publishing. DOI

Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q., & Guo, S. (2017). Role of silicon on plant–pathogen interactions. Frontiers in Plant Science, 8, 1–14. DOI

Wang, Y., Fu, X.-Z., Liu, J.-H., & Hong, N. (2011). Differential structure and physiological response to canker challenge between "Meiwa" kumquat and "Newhall" navel orange with contrasting resistance. Scientia Horticulturae, 128(2), 115–123. DOI

Weerahewa, H. L. D., & Wicramasekara, I. (2020). Preharvest application of silicon reduces internal browning development of pineapple (Ananas comosus' Mauritius') during cold storage: A novel approach. Acta Horticulturae, 1278, 39–44. DOI

Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., & Deshmukh, R. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech, 9(73), 1–16. DOI

Žemlička, L., Fodran, P., Kolek, E., & Prónayová, N. (2013). Analysis of natural aroma and flavor of MD2 pineapple variety (Ananas comosus [L.] Merr.). Acta Chimica Slovaca, 6(1), 123–128. DOI

DOI: http://doi.org/10.17503/agrivita.v41i0.3635

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.