Mapping of Indonesia’s Agricultural Insecticides in 2021: Registered Products, Future Research Opportunities, and Information Dissemination

Ignatius Putra Andika, Edhi Martono


Since the onset of green revolution in Indonesia, insecticides have become an indispensable tool to manage insect pests. However, the increasing concern over human and environmental health, coupled with the establishment of insecticide-resistance insect populations, has urged the reduction of chemical insecticide use. But as safer novel technologies suffer in their availability, result reliability, practicality, and cost-results efficiency that farmers seek; chemical insecticides remain the option for many farmers. Understanding insecticides availability to Indonesian farmers and their current uses and situation. The pin point was made to maximize their effectiveness and later reduce risk caused by their use. Pyrethroid was the most registered insecticide group followed by other broad-spectrum insecticide groups, such as organophosphates and carbamates. Insect insecticide resistances have been evaluated for many major insect pests in high-value commodities and staple crops, unfortunately it misses several important species. This review used initial data to demonstrate knowledge gaps that still require further research and suggested research themes which may counter these opportunities. Besides, it suggests a working framework to enhance technology adoption by farmers. Reducing chemical insecticide should be a common goal and a collaborative effort, and in order to divert the adverse effects while maximizing their effectivity in the field.


Exploratory Data Analysis; Indonesia; Insect Resistance; Registered Insecticides

Full Text:



Aldini, G. M., Wijonarko, A., Witjaksono, de Putter, H., Hengsdijk, H., & Trisyono, Y. A. (2021). Insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae) populations in shallot areas of Java, Indonesia. Journal of Economic Entomology, 114(6), 2505–2511. Retrieved from website

Amarasekare, K. G., Shearer, P. W., & Mills, N. J. (2016). Testing the selectivity of pesticide effects on natural enemies in laboratory bioassays. Biological Control, 102, 7–16. DOI

Andika, I. P., Vandervoort, C., & Wise, J. C. (2019). Rainfastness of insecticides used to control spotted-wing drosophila in tart cherry production. Insects, 10(7), 203. DOI

Ayalew, G. (2006). Comparison of yield loss on cabbage from Diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) using two insecticides. Crop Protection, 25(9), 915–919. DOI

Baehaki, S. E., Iswanto, E. H., & Munawar, D. (2016). Resistensi wereng cokelat terhadap insektisida yang beredar di sentra produksi padi. Jurnal Penelitian Pertanian Tanaman Pangan, 35(2), 99–108. DOI

Balabanidou, V., Grigoraki, L., & Vontas, J. (2018). Insect cuticle: a critical determinant of insecticide resistance. Current Opinion in Insect Science, 27, 68–74. DOI

Boyer, S., Zhang, H., & Lempérière, G. (2012). A review of control methods and resistance mechanisms in stored-product insects. Bulletin of Entomological Research, 102(2), 213–229. DOI

Casida, J. E., & Quistad, G. B. (1998). Golden age of insecticide research: past, present, or future? Annual Review of Entomology, 43, 1–16. DOI

Coslor, C. C., Vandervoort, C., & Wise, J. C. (2019). Insecticide dose and seasonal timing of trunk injection in apples influence efficacy and residues in nectar and plant parts. Pest Management Science, 75(5), 1453–1463. DOI

Coy, M. R., Bin, L., & Stelinski, L. L. (2016). Reversal of insecticide resistance in Florida populations of Diaphorina citri (Hemiptera: Liviidae). Florida Entomologist, 99(1), 26–32. DOI

Crawley, S. E., Gordon, J. R., Kowles, K. A., Potter, M. F., & Haynes, K. F. (2017). Impact of sublethal exposure to a pyrethroid-neonicotinoid insecticide on mating, fecundity and development in the bed bug Cimex lectularis L. (Hemiptera: Cimicidae). PLoS ONE, 12(5), e0177410. DOI

de Souza, M. T., de Souza, M. T., Bernardi, D., de Melo, D. J., Zarbin, P. H. G., & Zawadneak, M. A. C. (2021). Insecticidal and oviposition deterrent effects of essential oils of Baccharis spp. and histological assessment against Drosophila suzukii (Diptera: Drosophilidae). Scientific Reports, 11, 3944. DOI

Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916–919. DOI

Dono, D., Widayani, N. S., Ishmayana, S., Hidayat, Y., Widiantini, F., & Nasahi, C. (2022). Resistance of Nilaparvata lugens to fenobucarb and imidacloprid and susceptibility to neem oil insecticides. HAYATI Journal of Biosciences, 29(2), 234–244. DOI

Dunn, T. P. ‘Sam’, Champagne, D. E., Riley, D. G., Smith, H., & Bennett, J. E. (2022). A target site mutation associated with diamide insecticide resistance in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) is widespread in South Georgia and Florida populations. Journal of Economic Entomology, 115(1), 289–296. DOI

Eziah, V. Y., Rose, H. A., Wilkes, M., & Clift, A. D. (2009). Biochemical mechanisms of insecticide resistance in the diamondback moth (DBM), Plutella xylostella L. (Lepidopterata: Yponomeutidae), in the Sydney region, Australia. Australian Journal of Entomology, 48(4), 321–327. DOI

Filho, F. H. I., Heldens, W. B., Kong, Z., & de Lange, E. S. (2020). Drones: Innovative technology for use in precision pest management. Journal of Economic Entomology, 113(1), 1–25. DOI

Gallagher, K. D., Kenmore, P. E., Sogawa, K. (1994). Judicial use of insecticides deter planthopper outbreaks and extend the life of resistant varieties in Southeast Asian rice. In: R. F. Denno & T. J. Perfect (Eds.), Planthoppers: Their Ecology and Management (pp. 299-614). Berlin: Springer-Science. DOI

Gao, X., Yang, J., Xu, B., Xie, W., Wang, S., Zhang, Y., … Wu, Q. (2016). Identification and characterization of the gene CYP340W1 from Plutella xylostella and its possible involvement in resistance to abamectin. International Journal of Molecular Sciences, 17(3), 274. DOI

Hladik, M. L., Main, A. R., & Goulson, D. (2018). Environmental risks and challenges associated with neonicotinoid insecticides. Environmental Science and Technology, 52(6), 3329–3335. DOI

Hu, B., Ren, M., Fan, J., Huang, S., Wang, X., Elzaki, M. E. A., … Su, J. (2020). Xenobiotic transcription factors CncC and maf regulate expression of CYP321A16 and CYP332A1 that mediate chlorpyrifos resistance in Spodoptera exigua. Journal of Hazardous Materials, 398, 122971. DOI

Hu, Z.-D., Feng, X., Lin, Q.-S., Chen, H.-Y., Li, Z.-Y., Yin, F., … Gao, X.-W. (2014). Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella Linnaeus. Journal of Integrative Agriculture, 13(11), 2452–2459. DOI

Jeanguenat, A. (2013). The story of a new insecticidal chemistry class: The diamides. Pest Management Science, 69(1), 7–14. DOI

Kishi, M. (2002). Farmers’ perceptions ot pesticides, and resultant health problems from exposures. International Journal of Occupational and Environmental Health, 8(3), 175–181. Retrieved from website

Knezevic, S. Z., & Datta, A. (2015). The critical period for weed control: Revisiting data analysis. Weed Science, 63(Special Issue), 188–202. DOI

Kotta, N. R. E., Trisyono, Y. A., & Wijonarko, A. (2018). Resistance level of Plutella xylostella L. (Lepidoptera: Plutellidae) on cypermethrin in the Regency of Kupang. Jurnal Perlindungan Tanaman Indonesia, 22(2), 186-192. DOI

Li, Y., Sun, H., Tian, Z., Li, Y., Ye, X., Li, R., … Zhang, Y. (2021). Identification of key residues of carboxylesterase PxEst-6 involved in pyrethroid metabolism in Plutella xylostella (L.). Journal of Hazardous Materials, 407, 124612. DOI

Lin, Y., Jin, T., Zeng, L., & Lu, Y. (2012). Cuticular penetration of b -cypermethrin in insecticide-susceptible and resistant strains of Bactrocera dorsalis. Pesticide Biochemistry and Physiology, 103(3), 189–193. DOI

Makhal, A., Robertson, K., Thyne, M., & Mirosa, M. (2021). Normalising the “ugly” to reduce food waste: Exploring the socialisations that form appearance preferences for fresh fruits and vegetables. Journal of Consumer Behaviour, 20(5), 1025-1039. DOI

Mariyono, J., & Sumarno. (2015). Chilli production and adoption of chilli-based agribusiness in Indonesia. Journal of Agribusiness in Developing and Emerging Economies, 5(1), 57–75. DOI

Mariyono, J., Kuntariningsih, A., & Kompas, T. (2018). Pesticide use in Indonesian vegetable farming and its determinants. Management of Environmental Quality, 29(2), 305–323. DOI

Matteson, P. C. (1995). The “50% pesticide cuts” in Europe: A glimpse of our future? American Entomologist, 41(4), 210–220. DOI

Ministry of Agriculture. (2020). Pedoman pengawasan pupuk dan pestisida tahun 2020. Retrieved from PDF Accessed on 24 August 2021.

Moekasan, T. K., & Basuki, R. S. (2007). Status resistensi Spodoptera exigua pada tanaman bawang merah asal Kabupaten Cirebon, Brebes, dan Tegal terhadap insektisida yang umum digunakan petani di daerah tersebut. Jurnal Hortikultura, 17(4), 343–354. Retrieved from website

Moekasan, T. K., Sastrosiswojo, S., Rukmana, T., Sutanto, H., Purnamasari, I. S., & Kurnia, A. (2004). Status resistensi lima strain Plutella xylostella L. terhadap formulasi fipronil, deltametrin, profenofos, abamektin, dan Bacillus thuringiensis. Jurnal Hortikultura, 14(2), 84–90. Retrieved from website

Mueller, D. S., Stewart, A., Clifford, R., Iles, L., Sisson, A. J., & Staker, J. (2020). Using design interventions to develop communication solutions for integrated pest management. Journal of Integrated Pest Management, 11(1), 10. DOI

Nansen, C., Baissac, O., Nansen, M., Powis, K., & Baker, G. (2016). Behavioral avoidance - will physiological insecticide resistance level of insect strains affect their oviposition and movement responses? PLoS ONE, 11(3), e0149994. DOI

Nauen, R., & Steinbach, D. (2016). Resistance to diamide insecticides in Lepidopteran pests. In A. R. Horowitz, & I. Ishaaya (Eds.), Advances in Insect Control and Resistance Management (pp. 219-240). Springer. DOI

Pang, R., Li, Y., Dong, Y., Liang, Z., Zhang, Y., & Zhang, W. (2014). Identification of promoter polymorphisms in the cytochrome P450 CYP6AY1 linked with insecticide resistance in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 23(6), 768–778. DOI

Parsa, S., Morse, S., Bonifacio, A., Chancellor, T. C. B., Condori, B., Crespo-Pérez, V., … Dangles, O. (2014). Obstacles to integrated pest management adoption in developing countries. Proceedings of the National Academy of Sciences of the United States of America, 111(10), 3889–3894. DOI

Patel, R. (2013). The long green revolution. The Journal of Peasant Studies, 40(1), 1–63. DOI

Prabaningrum, L., Uhan, T. S., Nurwahidah, U, Karmin, & Hendra, A. (2013). Resistensi Plutella xylostella terhadap Insektisida yang umum digunakan oleh petani kubis di Sulawesi Selatan. Jurnal Hortikultura, 23(2), 164–173. DOI

Prihandiani, A., Bella, D. R., Chairani, N. R., Winarto, Y., & Fox, J. (2021). The tsunami of pesticide use for rice production on Java and its consequences. The Asia Pacific Journal of Anthropology, 22(4), 276–297. DOI

Punyawattoe, P., Han, Z., Sriratanasak, W., Arunmit, S., Chaiwong, J., & Bullangpoti, V. (2013). Ethiprole resistance in Nilaparvata lugens (Hemiptera: Delphacidae): Possible mechanisms and cross-resistance. Applied Entomology and Zoology, 48(2), 205–211. DOI

Qin, J., Guo, L., Ye, F., Kang, S., Sun, D., Zhu, L., … Zhang, Y. (2021). MAPK-activated transcription factor PxJun suppresses PxABCB1 expression and confers resistance to Bacillus thuringiensis Cry1Ac toxin in Plutella xylostella (L.). Applied and Environmental Microbiology, 87(13), e00466-21. DOI

Ramachanderan, R., & Schaefer, B. (2020). Spinosyn insecticides. ChemTexts, 6(3), 1–29. DOI

Rianto, J. H. (2005). The development of pesticides management policy in Indonesia. Paper presented in Proceedings: Asia Regional Workshop on the Implementation, Monitoring and Observance of the International Code of Conduct on the Distribution and Use of Pesticides. Bangkok, Thailand, 26-28 July 2005. Food and Agriculture Organization of the United Nations. Retrieved from website

Rother, H.-A. (2018). Pesticide labels: Protecting liability or health? – Unpacking “misuse” of pesticides. Current Opinion in Environmental Science and Health, 4, 10–15. DOI

Saleem, M., Hussain, D., Ghouse, G., Abbas, M., & Fisher, S. W. (2016). Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) from four districts of Punjab, Pakistan to conventional and new chemistry insecticides. Crop Protection, 79, 177–184. DOI

Sparks, T. C., & Lorsbach, B. A. (2017). Perspectives on the agrochemical industry and agrochemical discovery. Pest Management Science, 73(4), 672–677. DOI

Sparks, T. C., & Nauen, R. (2015). IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121, 122–128. DOI

Sridhar, V., & Reddy, P. V. R. (2013). Use of degree days and plant phenology: A reliable tool for predicting insect pest activity under climate change conditions. In H. C. P. Singh, N. K. S. Rao, & K. S. Shivashankar (Eds.), Climate-resilient horticulture: Adaptation and mitigation strategies (pp. 287-294). India: Springer. DOI

Sutriadi, M. T., Harsanti, S. E., Wahyuni, S., & Wihardjaka, A. (2020). Pesitisida nabati: Prospek pengendali hama ramah lingkungan. Jurnal Sumberdaya Lahan, 13(2), 89–101. DOI

Tabashnik, B. E., Liesner, L. R., Ellsworth, P. C., Unnithan, G. C., Fabrick, J. A., Naranjo, S. E., … Carrière, Y. (2020). Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States. Proceedings of the National Academy of Sciences of the United States of America, 118(1), e2019115118. DOI

Thorburn, C. (2015). The rise and demise of integrated pest management in rice in Indonesia. Insects, 6(2), 381–408. DOI

Utami, R. R., Geerling, G. W., Salami, I. R. S., Notodarmojo, S., & Ragas, Ad M. J. (2020). Agricultural pesticide use in the upper Citarum river basin: Basic data for model-based risk management. Journal of Environmental Science and Sustainable Development, 3(2), 235-260. DOI

Wang, J., Wang, X., Lansdell, S. J., Zhang, J., Millar, N. S., & Wu, Y. (2016). A three amino acid deletion in the transmembrane domain of the nicotinic acetylcholine receptor α6 subunit confers high-level resistance to spinosad in Plutella xylostella. Insect Biochemistry and Molecular Biology, 71, 29–36. DOI

Wang, L.-X., Tao, S., Zhang, Y.-C., Pei, X.-G., Gao, Y., Song, X.-Y., … Gao, C.-F. (2022). Overexpression of ATP-binding cassette transporter Mdr49-like confers resistance to imidacloprid in the field populations of brown planthopper, Nilaparvata lugens. Pest Management Science, 78(2), 579–590. DOI

Wang, R., Zhang, W., Che, W., Qu, C., Li, F., Desneux, N., & Luo, C. (2017). Lethal and sublethal effects of cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci (Hemiptera: Aleyrodidae) MED. Crop Protection, 91, 108–113. DOI

Wang, X., Xiang, X., Yu, H., Liu, S., Yin, Y., Cui, P., … Yang, Q. (2018). Monitoring and biochemical characterization of beta-cypermethrin resistance in Spodoptera exigua (Lepidoptera: Noctuidae) in Sichuan Province, China. Pesticide Biochemistry and Physiology, 146, 71–79. DOI

Williams, T., Valle, J., & Viñuela, E. (2003). Is the naturally derived insecticide Spinosad® compatible with insect natural enemies? Biocontrol Science and Technology, 13(5), 459–475. DOI

Wise, J., & Whalon, M. (2009). A systems approach to IPM integration, ecological assessment and resistance management in tree fruit orchards. In I. Ishaaya & A. R. Horowitz (Eds.), Biorational Control of Arthropod Pests (pp. 325–345). Dordrecht: Springer. DOI

Wu, S.-F., Zeng, B., Zheng, C., Mu, X.-C., Zhang, Y., Hu, J., … Shen, J.-L. (2018). The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012-2016. Scientific Reports, 8(1), 4586. DOI

Zhang, H., Li, F., Cheng, C., Jiao, D., Zhou, Z., & Cheng, L. (2013). The identification and characterisation of a new deltamethrin resistance-associated gene, UBL40, in the diamondback moth, Plutella xylostella (L.). Gene, 530(1), 51–56. DOI

Zhang, Z., Xu, C., Ding, J., Zhao, Y., Lin, J., Liu, F., & Mu, W. (2019). Cyantraniliprole seed treatment efficiency against Agrotis ipsilon (Lepidoptera: Noctuidae) and residue concentrations in corn plants and soil. Pest Management Science, 75(5), 1464–1472. DOI

Zhao, G., Rose, R. L., Hodgson, E., & Roe, R. M. (1996). Biochemical mechanisms and diagnostic microassays for pyrethroid, carbamate, and organophosphate insecticide resistance/cross-resistance in the tobacco budworm, Heliothis virescens. Pesticide Biochemistry and Physiology, 56(3), 183–195. DOI

Zuo, Y.-Y., Shi, Y., Zhang, F., Guan, F., Zhang, J., Feyereisen, R., … Wu, Y. (2021). Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm. PLoS Genetics, 17(7), e1009680. DOI

Zuo, Y.-Y., Xue, Y.-X., Wang, Z.-Y., Ren, X., Aioub, A. A. A., Wu, Y.-D., … Hu, Z.-N. (2022). Knockin of the G275E mutation of the nicotinic acetylcholine receptor (nAChR) α6 confers high levels of resistance to spinosyns in Spodoptera exigua. Insect Science, 29(2), 478-486. DOI


Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.