Mapping of Indonesia’s Agricultural Insecticides in 2021: Registered Products, Future Research Opportunities, and Information Dissemination
Abstract
Keywords
Full Text:
PDFReferences
Aldini, G. M., Wijonarko, A., Witjaksono, de Putter, H., Hengsdijk, H., & Trisyono, Y. A. (2021). Insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae) populations in shallot areas of Java, Indonesia. Journal of Economic Entomology, 114(6), 2505–2511. Retrieved from website
Amarasekare, K. G., Shearer, P. W., & Mills, N. J. (2016). Testing the selectivity of pesticide effects on natural enemies in laboratory bioassays. Biological Control, 102, 7–16. DOI
Andika, I. P., Vandervoort, C., & Wise, J. C. (2019). Rainfastness of insecticides used to control spotted-wing drosophila in tart cherry production. Insects, 10(7), 203. DOI
Ayalew, G. (2006). Comparison of yield loss on cabbage from Diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) using two insecticides. Crop Protection, 25(9), 915–919. DOI
Baehaki, S. E., Iswanto, E. H., & Munawar, D. (2016). Resistensi wereng cokelat terhadap insektisida yang beredar di sentra produksi padi. Jurnal Penelitian Pertanian Tanaman Pangan, 35(2), 99–108. DOI
Balabanidou, V., Grigoraki, L., & Vontas, J. (2018). Insect cuticle: a critical determinant of insecticide resistance. Current Opinion in Insect Science, 27, 68–74. DOI
Boyer, S., Zhang, H., & Lempérière, G. (2012). A review of control methods and resistance mechanisms in stored-product insects. Bulletin of Entomological Research, 102(2), 213–229. DOI
Casida, J. E., & Quistad, G. B. (1998). Golden age of insecticide research: past, present, or future? Annual Review of Entomology, 43, 1–16. DOI
Coslor, C. C., Vandervoort, C., & Wise, J. C. (2019). Insecticide dose and seasonal timing of trunk injection in apples influence efficacy and residues in nectar and plant parts. Pest Management Science, 75(5), 1453–1463. DOI
Coy, M. R., Bin, L., & Stelinski, L. L. (2016). Reversal of insecticide resistance in Florida populations of Diaphorina citri (Hemiptera: Liviidae). Florida Entomologist, 99(1), 26–32. DOI
Crawley, S. E., Gordon, J. R., Kowles, K. A., Potter, M. F., & Haynes, K. F. (2017). Impact of sublethal exposure to a pyrethroid-neonicotinoid insecticide on mating, fecundity and development in the bed bug Cimex lectularis L. (Hemiptera: Cimicidae). PLoS ONE, 12(5), e0177410. DOI
de Souza, M. T., de Souza, M. T., Bernardi, D., de Melo, D. J., Zarbin, P. H. G., & Zawadneak, M. A. C. (2021). Insecticidal and oviposition deterrent effects of essential oils of Baccharis spp. and histological assessment against Drosophila suzukii (Diptera: Drosophilidae). Scientific Reports, 11, 3944. DOI
Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916–919. DOI
Dono, D., Widayani, N. S., Ishmayana, S., Hidayat, Y., Widiantini, F., & Nasahi, C. (2022). Resistance of Nilaparvata lugens to fenobucarb and imidacloprid and susceptibility to neem oil insecticides. HAYATI Journal of Biosciences, 29(2), 234–244. DOI
Dunn, T. P. ‘Sam’, Champagne, D. E., Riley, D. G., Smith, H., & Bennett, J. E. (2022). A target site mutation associated with diamide insecticide resistance in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) is widespread in South Georgia and Florida populations. Journal of Economic Entomology, 115(1), 289–296. DOI
Eziah, V. Y., Rose, H. A., Wilkes, M., & Clift, A. D. (2009). Biochemical mechanisms of insecticide resistance in the diamondback moth (DBM), Plutella xylostella L. (Lepidopterata: Yponomeutidae), in the Sydney region, Australia. Australian Journal of Entomology, 48(4), 321–327. DOI
Filho, F. H. I., Heldens, W. B., Kong, Z., & de Lange, E. S. (2020). Drones: Innovative technology for use in precision pest management. Journal of Economic Entomology, 113(1), 1–25. DOI
Gallagher, K. D., Kenmore, P. E., Sogawa, K. (1994). Judicial use of insecticides deter planthopper outbreaks and extend the life of resistant varieties in Southeast Asian rice. In: R. F. Denno & T. J. Perfect (Eds.), Planthoppers: Their Ecology and Management (pp. 299-614). Berlin: Springer-Science. DOI
Gao, X., Yang, J., Xu, B., Xie, W., Wang, S., Zhang, Y., … Wu, Q. (2016). Identification and characterization of the gene CYP340W1 from Plutella xylostella and its possible involvement in resistance to abamectin. International Journal of Molecular Sciences, 17(3), 274. DOI
Hladik, M. L., Main, A. R., & Goulson, D. (2018). Environmental risks and challenges associated with neonicotinoid insecticides. Environmental Science and Technology, 52(6), 3329–3335. DOI
Hu, B., Ren, M., Fan, J., Huang, S., Wang, X., Elzaki, M. E. A., … Su, J. (2020). Xenobiotic transcription factors CncC and maf regulate expression of CYP321A16 and CYP332A1 that mediate chlorpyrifos resistance in Spodoptera exigua. Journal of Hazardous Materials, 398, 122971. DOI
Hu, Z.-D., Feng, X., Lin, Q.-S., Chen, H.-Y., Li, Z.-Y., Yin, F., … Gao, X.-W. (2014). Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella Linnaeus. Journal of Integrative Agriculture, 13(11), 2452–2459. DOI
Jeanguenat, A. (2013). The story of a new insecticidal chemistry class: The diamides. Pest Management Science, 69(1), 7–14. DOI
Kishi, M. (2002). Farmers’ perceptions ot pesticides, and resultant health problems from exposures. International Journal of Occupational and Environmental Health, 8(3), 175–181. Retrieved from website
Knezevic, S. Z., & Datta, A. (2015). The critical period for weed control: Revisiting data analysis. Weed Science, 63(Special Issue), 188–202. DOI
Kotta, N. R. E., Trisyono, Y. A., & Wijonarko, A. (2018). Resistance level of Plutella xylostella L. (Lepidoptera: Plutellidae) on cypermethrin in the Regency of Kupang. Jurnal Perlindungan Tanaman Indonesia, 22(2), 186-192. DOI
Li, Y., Sun, H., Tian, Z., Li, Y., Ye, X., Li, R., … Zhang, Y. (2021). Identification of key residues of carboxylesterase PxEst-6 involved in pyrethroid metabolism in Plutella xylostella (L.). Journal of Hazardous Materials, 407, 124612. DOI
Lin, Y., Jin, T., Zeng, L., & Lu, Y. (2012). Cuticular penetration of b -cypermethrin in insecticide-susceptible and resistant strains of Bactrocera dorsalis. Pesticide Biochemistry and Physiology, 103(3), 189–193. DOI
Makhal, A., Robertson, K., Thyne, M., & Mirosa, M. (2021). Normalising the “ugly” to reduce food waste: Exploring the socialisations that form appearance preferences for fresh fruits and vegetables. Journal of Consumer Behaviour, 20(5), 1025-1039. DOI
Mariyono, J., & Sumarno. (2015). Chilli production and adoption of chilli-based agribusiness in Indonesia. Journal of Agribusiness in Developing and Emerging Economies, 5(1), 57–75. DOI
Mariyono, J., Kuntariningsih, A., & Kompas, T. (2018). Pesticide use in Indonesian vegetable farming and its determinants. Management of Environmental Quality, 29(2), 305–323. DOI
Matteson, P. C. (1995). The “50% pesticide cuts” in Europe: A glimpse of our future? American Entomologist, 41(4), 210–220. DOI
Ministry of Agriculture. (2020). Pedoman pengawasan pupuk dan pestisida tahun 2020. Retrieved from PDF Accessed on 24 August 2021.
Moekasan, T. K., & Basuki, R. S. (2007). Status resistensi Spodoptera exigua pada tanaman bawang merah asal Kabupaten Cirebon, Brebes, dan Tegal terhadap insektisida yang umum digunakan petani di daerah tersebut. Jurnal Hortikultura, 17(4), 343–354. Retrieved from website
Moekasan, T. K., Sastrosiswojo, S., Rukmana, T., Sutanto, H., Purnamasari, I. S., & Kurnia, A. (2004). Status resistensi lima strain Plutella xylostella L. terhadap formulasi fipronil, deltametrin, profenofos, abamektin, dan Bacillus thuringiensis. Jurnal Hortikultura, 14(2), 84–90. Retrieved from website
Mueller, D. S., Stewart, A., Clifford, R., Iles, L., Sisson, A. J., & Staker, J. (2020). Using design interventions to develop communication solutions for integrated pest management. Journal of Integrated Pest Management, 11(1), 10. DOI
Nansen, C., Baissac, O., Nansen, M., Powis, K., & Baker, G. (2016). Behavioral avoidance - will physiological insecticide resistance level of insect strains affect their oviposition and movement responses? PLoS ONE, 11(3), e0149994. DOI
Nauen, R., & Steinbach, D. (2016). Resistance to diamide insecticides in Lepidopteran pests. In A. R. Horowitz, & I. Ishaaya (Eds.), Advances in Insect Control and Resistance Management (pp. 219-240). Springer. DOI
Pang, R., Li, Y., Dong, Y., Liang, Z., Zhang, Y., & Zhang, W. (2014). Identification of promoter polymorphisms in the cytochrome P450 CYP6AY1 linked with insecticide resistance in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 23(6), 768–778. DOI
Parsa, S., Morse, S., Bonifacio, A., Chancellor, T. C. B., Condori, B., Crespo-Pérez, V., … Dangles, O. (2014). Obstacles to integrated pest management adoption in developing countries. Proceedings of the National Academy of Sciences of the United States of America, 111(10), 3889–3894. DOI
Patel, R. (2013). The long green revolution. The Journal of Peasant Studies, 40(1), 1–63. DOI
Prabaningrum, L., Uhan, T. S., Nurwahidah, U, Karmin, & Hendra, A. (2013). Resistensi Plutella xylostella terhadap Insektisida yang umum digunakan oleh petani kubis di Sulawesi Selatan. Jurnal Hortikultura, 23(2), 164–173. DOI
Prihandiani, A., Bella, D. R., Chairani, N. R., Winarto, Y., & Fox, J. (2021). The tsunami of pesticide use for rice production on Java and its consequences. The Asia Pacific Journal of Anthropology, 22(4), 276–297. DOI
Punyawattoe, P., Han, Z., Sriratanasak, W., Arunmit, S., Chaiwong, J., & Bullangpoti, V. (2013). Ethiprole resistance in Nilaparvata lugens (Hemiptera: Delphacidae): Possible mechanisms and cross-resistance. Applied Entomology and Zoology, 48(2), 205–211. DOI
Qin, J., Guo, L., Ye, F., Kang, S., Sun, D., Zhu, L., … Zhang, Y. (2021). MAPK-activated transcription factor PxJun suppresses PxABCB1 expression and confers resistance to Bacillus thuringiensis Cry1Ac toxin in Plutella xylostella (L.). Applied and Environmental Microbiology, 87(13), e00466-21. DOI
Ramachanderan, R., & Schaefer, B. (2020). Spinosyn insecticides. ChemTexts, 6(3), 1–29. DOI
Rianto, J. H. (2005). The development of pesticides management policy in Indonesia. Paper presented in Proceedings: Asia Regional Workshop on the Implementation, Monitoring and Observance of the International Code of Conduct on the Distribution and Use of Pesticides. Bangkok, Thailand, 26-28 July 2005. Food and Agriculture Organization of the United Nations. Retrieved from website
Rother, H.-A. (2018). Pesticide labels: Protecting liability or health? – Unpacking “misuse” of pesticides. Current Opinion in Environmental Science and Health, 4, 10–15. DOI
Saleem, M., Hussain, D., Ghouse, G., Abbas, M., & Fisher, S. W. (2016). Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) from four districts of Punjab, Pakistan to conventional and new chemistry insecticides. Crop Protection, 79, 177–184. DOI
Sparks, T. C., & Lorsbach, B. A. (2017). Perspectives on the agrochemical industry and agrochemical discovery. Pest Management Science, 73(4), 672–677. DOI
Sparks, T. C., & Nauen, R. (2015). IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121, 122–128. DOI
Sridhar, V., & Reddy, P. V. R. (2013). Use of degree days and plant phenology: A reliable tool for predicting insect pest activity under climate change conditions. In H. C. P. Singh, N. K. S. Rao, & K. S. Shivashankar (Eds.), Climate-resilient horticulture: Adaptation and mitigation strategies (pp. 287-294). India: Springer. DOI
Sutriadi, M. T., Harsanti, S. E., Wahyuni, S., & Wihardjaka, A. (2020). Pesitisida nabati: Prospek pengendali hama ramah lingkungan. Jurnal Sumberdaya Lahan, 13(2), 89–101. DOI
Tabashnik, B. E., Liesner, L. R., Ellsworth, P. C., Unnithan, G. C., Fabrick, J. A., Naranjo, S. E., … Carrière, Y. (2020). Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States. Proceedings of the National Academy of Sciences of the United States of America, 118(1), e2019115118. DOI
Thorburn, C. (2015). The rise and demise of integrated pest management in rice in Indonesia. Insects, 6(2), 381–408. DOI
Utami, R. R., Geerling, G. W., Salami, I. R. S., Notodarmojo, S., & Ragas, Ad M. J. (2020). Agricultural pesticide use in the upper Citarum river basin: Basic data for model-based risk management. Journal of Environmental Science and Sustainable Development, 3(2), 235-260. DOI
Wang, J., Wang, X., Lansdell, S. J., Zhang, J., Millar, N. S., & Wu, Y. (2016). A three amino acid deletion in the transmembrane domain of the nicotinic acetylcholine receptor α6 subunit confers high-level resistance to spinosad in Plutella xylostella. Insect Biochemistry and Molecular Biology, 71, 29–36. DOI
Wang, L.-X., Tao, S., Zhang, Y.-C., Pei, X.-G., Gao, Y., Song, X.-Y., … Gao, C.-F. (2022). Overexpression of ATP-binding cassette transporter Mdr49-like confers resistance to imidacloprid in the field populations of brown planthopper, Nilaparvata lugens. Pest Management Science, 78(2), 579–590. DOI
Wang, R., Zhang, W., Che, W., Qu, C., Li, F., Desneux, N., & Luo, C. (2017). Lethal and sublethal effects of cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci (Hemiptera: Aleyrodidae) MED. Crop Protection, 91, 108–113. DOI
Wang, X., Xiang, X., Yu, H., Liu, S., Yin, Y., Cui, P., … Yang, Q. (2018). Monitoring and biochemical characterization of beta-cypermethrin resistance in Spodoptera exigua (Lepidoptera: Noctuidae) in Sichuan Province, China. Pesticide Biochemistry and Physiology, 146, 71–79. DOI
Williams, T., Valle, J., & Viñuela, E. (2003). Is the naturally derived insecticide Spinosad® compatible with insect natural enemies? Biocontrol Science and Technology, 13(5), 459–475. DOI
Wise, J., & Whalon, M. (2009). A systems approach to IPM integration, ecological assessment and resistance management in tree fruit orchards. In I. Ishaaya & A. R. Horowitz (Eds.), Biorational Control of Arthropod Pests (pp. 325–345). Dordrecht: Springer. DOI
Wu, S.-F., Zeng, B., Zheng, C., Mu, X.-C., Zhang, Y., Hu, J., … Shen, J.-L. (2018). The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012-2016. Scientific Reports, 8(1), 4586. DOI
Zhang, H., Li, F., Cheng, C., Jiao, D., Zhou, Z., & Cheng, L. (2013). The identification and characterisation of a new deltamethrin resistance-associated gene, UBL40, in the diamondback moth, Plutella xylostella (L.). Gene, 530(1), 51–56. DOI
Zhang, Z., Xu, C., Ding, J., Zhao, Y., Lin, J., Liu, F., & Mu, W. (2019). Cyantraniliprole seed treatment efficiency against Agrotis ipsilon (Lepidoptera: Noctuidae) and residue concentrations in corn plants and soil. Pest Management Science, 75(5), 1464–1472. DOI
Zhao, G., Rose, R. L., Hodgson, E., & Roe, R. M. (1996). Biochemical mechanisms and diagnostic microassays for pyrethroid, carbamate, and organophosphate insecticide resistance/cross-resistance in the tobacco budworm, Heliothis virescens. Pesticide Biochemistry and Physiology, 56(3), 183–195. DOI
Zuo, Y.-Y., Shi, Y., Zhang, F., Guan, F., Zhang, J., Feyereisen, R., … Wu, Y. (2021). Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm. PLoS Genetics, 17(7), e1009680. DOI
Zuo, Y.-Y., Xue, Y.-X., Wang, Z.-Y., Ren, X., Aioub, A. A. A., Wu, Y.-D., … Hu, Z.-N. (2022). Knockin of the G275E mutation of the nicotinic acetylcholine receptor (nAChR) α6 confers high levels of resistance to spinosyns in Spodoptera exigua. Insect Science, 29(2), 478-486. DOI
DOI: http://doi.org/10.17503/agrivita.v44i2.3375
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.