Effect of Gamma Rays Irradiation and In Vitro Selection on Citrus nobilis (L.) ‘Siam Banyuwangi’ to Huanglongbing (HLB) Disease

Dumaris Priskila Purba, Ali Husni, Alina Akhidaya, Mia Kosmiatin, Agus Purwito

Abstract


Siam orange (Citrus nobilis L.) provides great economic value and social importance, despite its susceptibility to Huanglongbing (HLB) disease caused by Ca. Liberabacter sp., classified as specific bacterium phloem vessels marked by the formation of callouses covering plasmodesmata. This research aims to improve the tolerance of Siam orange from Banyuwangi (SB) to HLB disease. The experiment was undertaken by performing a randomized design (CRD) with one factor (irradiation dose). This study consists of two interrelated experiments, which include: induction of embryo mutations with gamma rays irradiation, and in vitro selection of putative mutant. The embryo of SB was irradiated by gamma rays with doses of 0, 45, 50, and 55 Gray. Each treatment was repeatedly undertaken for five times with 20 embryos. After 24 weeks, in vitro selection of putative mutant shoots was screened by HLB pathogen suspension. The observation indicated that treatment of gamma rays in various doses influenced embryo germination. In general, gamma ray irradiation gave significant effects on embryo germination and plant morphological characters. In vitro selection results for putative mutant on doses of 45, 50, and 55 indicated tolerance to HLB pathogen after selection.


Keywords


Huanglongbing (HLB); In vitro breeding; Mutation breeding; Suspension of HLB pathogen

Full Text:

PDF

References


Achor, D. S., Etxeberria, E., Wang, N., Folimonova, S. Y., Chung, K. R., & Albrigo, L. G. (2010). Sequence of anatomical symptom observations in citrus affected with Huanglongbing disease. Plant Pathology Journal, 9(2), 56–64. https://doi.org/10.3923/ppj.2010.56.64

Agisimanto, D., Normah, Mohd. N., & Ibrahim, R. (2019). Rapid somatic embryogenesis of Citrus reticulata Blanco cv. Madu in an air-lift bioreactor culture. AGRIVITA Journal of Agricultural Science, 41(2), 284–294. https://doi.org/10.17503/agrivita.v41i2.2237

Agisimanto, D., Normah, Mohd. N., Ibrahim, R., & Mohamad, A. (2016). Gamma irradiation effect on embryogenic callus growth of Citrus reticulata cv. limau madu. Sains Malaysiana, 45(3), 329–337. Retrieved from https://www.ukm.my/jsm/pdf_files/SM-PDF-45-3-2016/02 Dita Agismanto.pdf

Al Fahdi, A., Al-Mamari, A., Shahid, M. S., Maharachchikumbura, S. S. N., Carvalho, C. M., Elliot, S. L., & Al-Sadi, A. M. (2018). Characterization of Huanglongbing disease associated with acid lime (Citrus aurantifolia Swingle) in Oman. Journal of Plant Pathology, 100(3), 419–427. https://doi.org/10.1007/s42161-018-0088-9

Álvarez-Holguín, Alan Morales-Nieto, C. R., AvendañoArrazate, C. H., Corrales-Lerma, R., VillarrealGuerrero, F., Santellano-Estrada, E., & GómezSimuta, Y. (2019). Mean lethal dose (LD50) and growth reduction (GR50) due to gamma radiation in Wilman lovegrass (Eragrostis superba). Revista Mexicana de Ciencias Pecuarias, 10(1), 227–238. https://doi.org/10.22319/rmcp.v10i1.4327

Arisah, H., & Mariana, D. (2017). Keragaman buah jeruk keprok SoE mutan generasi M1V2 hasil induksi mutasi sinar gamma. Buletin Plasma Nutfah, 23(2), 69–80. https://doi.org/10.21082/blpn.v23n2.2017.p69-80

Asadi. (2013). Pemuliaan mutasi untuk perbaikan terhadap umur dan produktivitas pada kedelai. Jurnal AgroBiogen, 9(3), 135–142. https://doi.org/10.21082/jbio.v9n3.2013.p135-142

Bendix, C., & Lewis, J. D. (2018). The enemy within: phloem-limited pathogens. Molecular Plant Pathology, 19(1), 238–254. https://doi.org/10.1111/mpp.12526

Bermejo, A., Pardo, J., & Zaragoza, S. (2015). Influence of gamma irradiation on seedless citrus production: Pollen germination and fruit quality. Acta Horticulturae, (1065), 229–237. https://doi.org/10.17660/ActaHortic.2015.1065.25

Bodele, S. K. (2013). Effect of gamma radiation on morphological and growth parameters of Andrographis paniculata (Burm.F) Wall. Ex. Nees. Indian Journal of Applied Research, 3(6), 55–57. https://doi.org/10.15373/2249555x/june2013/19

Bové, J. M. (2006). Huanglongbing: A destructive, newlyemerging, century-old disease of citrus. Journal of Plant Pathology, 88(1), 7–37. Retrieved from http://www.sipav.org/main/jpp/index.php/jpp/article/view/828

Coletta-Filho, H. D., Carlos, E. F., Alves, K. C. S., Pereira, M. A. R., Boscariol-Camargo, R. L., de Souza, A. A., & Machado, M. A. (2010). In planta multiplication and graft transmission of ‘Candidatus Liberibacter asiaticus’ revealed by Real-Time PCR. European Journal of Plant Pathology, 126(1), 53–60. https://doi.org/10.1007/s10658-009-9523-2

da Graça, J. V., Kunta, M., Sétamou, M., Rascoe, J., Li, W., Nakhla, M. K., … Bartels, D. W. (2015). Huanglongbing in Texas: Report on the first detections in commercial citrus. Journal of Citrus Pathology, 2(1), 1–6. Retrieved from https://escholarship.org/uc/item/99p100ts

Deng, H., Achor, D., Exteberria, E., Yu, Q., Du, D., Stanton, D., … Gmitter Jr., F. G. (2019). Phloem regeneration is a mechanism for Huanglongbingtolerance of “Bearss” lemon and “LB8-9” sugar Belle® mandarin. Frontiers in Plant Science, 10, 277. https://doi.org/10.3389/fpls.2019.00277

Etxeberria, E., & Narciso, C. (2012). Phloem anatomy of citrus trees: Healthy vs. greening-affected. Proceedings of the Florida State Horticultural Society, 125, 1–4. Retrieved from https://crec.ifas.ufl.edu/media/crecifasufledu/faculty/etxeberria/2012-FSHS.pdf

Goldenberg, L., Yaniv, Y., Porat, R., & Carmi, N. (2014). Effect of Gamma-Irradiation Mutagenesis for induction of seedlessness, on the quality of mandarin fruit. Food and Nutrition Sciences, 5(10), 943-952. https://doi.org/104236/fns.2014510105

Gottwald, T. R. (2010). Current epidemiological understanding of citrus Huanglongbing. Annual Review of Phytopathology, 48(1), 119–139. https://doi.org/10.1146/annurevphyto-073009-114418

Goyal, S., & Khan, S. (2010). Induced mutagenesis in urdbean (Vigna mungo L. Hepper): A review. International Journal of Botany, 6(3), 194–206. https://doi.org/10.3923/ijb.2010.194.206

Granato, L. M., Galdeano, D. M., Da Roz D’Alessandre, N., Breton, M. C., & Machado, M. A. (2019). Callose synthase family genes plays an important role in the Citrus defense response to Candidatus Liberibacter asiaticus. European Journal of Plant Pathology, 155(1), 25–38. https://doi.org/10.1007/s10658-019-01747-6

Ikram, N., Dawar, S., Abbas, Z., & Zaki, M. J. (2010). Effect of (60cobalt) gamma rays on growth and root rot diseases in munbean (Vigna radiata L.). Pakistan Journal of Botany, 42(3), 2165–2170. Retrieved from https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=42015203

Killiny, N., & Hijaz, F. (2016). Amino acids implicated in plant defense are higher in Candidatus Liberibacter asiaticus-tolerant citrus varieties. Plant Signaling & Behavior, 11(4), e1171449. https://doi.org/10.1080/15592324.2016.1171449

Koh, E.-J., Zhou, L., Williams, D. S., Park, J., Ding, N., Duan, Y.-P., & Kang, B.-H. (2012). Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus.” Protoplasma, 249(3), 687–697. https://doi.org/10.1007/s00709-011-0312-3

Kosmiatin, M., Martasari, C., Yunimar, Akhdiya, A., & Husni, A. (2020). In vitro selection to increase Huanglongbing tolerance of citrus-derived from in vitro breeding. IOP Conference Series: Earth and Environmental Science, 457, 012080. Retrieved from https://iopscience.iop.org/article/10.1088/1755-1315/457/1/012080

Kosmiatin, M., & Husni, A. (2018). Perakitan varietas jeruk tanpa biji melalui pemuliaan konvensional dan nonkonvensional. Jurnal Penelitian Dan Pengembangan Pertanian, 37(2), 91–100. https://doi.org/10.21082/jp3.v37n2.2018.p91-100

Latado, R. R., Tulmann Neto, A., & Figueira, A. (2012). In vivo and in vitro mutation breeding of citrus. Bioremediation, Biodiversity and Bioavailability, 6(Special Issue 1), 40–45. Retrieved from http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/BBB_6(SI1)/BBB_6(SI1)40-45o.pdf

Li, F., Shimizu, A., Nishio, T., Tsutsumi, N., & Kato, H. (2019). Comparison and characterization of mutations induced by gamma-ray and carbonion irradiation in rice (Oryza sativa L.) using whole-genome resequencing. G3: Genes, Genomes, Genetics, 9(11), 3743–3751. https://doi.org/10.1534/g3.119.400555

Ling, A. P. K., Chia, J. Y., Hussein, S., & Harun, A. R. (2008). Physiological responses of Citrus sinensis to gamma irradiation. World Applied Sciences Journal, 5(1), 12–19. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.571.8020&rep=rep1&type=pdf

Lisdyanyanti, N. D., Anwar, S., & Darmawati, A. (2019). Pengaruh iradiasi sinar gamma terhadap induksi kalus dan seleksi tingkat toleransi padi (Oryza sativa L.) terhadap cekaman salinitas secara In-vitro. Berkala Bioteknologi, 2(2), 67–75. Retrieved from https://ejournal2.undip.ac.id/index.php/bb/article/view/6716

Lopez-Buenfil, J. A., Ramirez-Pool, J. A., Ruiz-Medrano, R., Del Carmen Montes-Horcasitas, M., Chavarin-Palacio, C., Moya-Hinojosa, J., … Xoconostle-Cazares, B. (2017). Dynamics of Huanglongbing-associated bacterium Candidatus Liberibacter asiaticus in Citrus aurantifolia Swingle (Mexican Lime). Pakistan Journal of Biological Sciences, 20(3), 113–123. https://doi.org/10.3923/pjbs.2017.113.123

Machado, M. A., Cristofani-Yaly, M., & Bastianel, M. (2011). Breeding, genetic and genomic of citrus for disease resistance. Revista Brasileira de Fruticultura, 33(special 1), 158–172. https://doi.org/10.1590/S0100-29452011000500019

Mba, C., Afza, R., Jankowicz-Cieslak, J., Bado, S., Matijevic, M., Huynh, O., & Till, B. J. (2009). Enhancing genetic diversity through induced mutagenesis in vegetatively propagated plants. In Q. Y. Shu (Ed.), Induced Plant Mutations in the Genomics Era (pp. 262–265). Rome, IT: Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/3/i0956e/I0956e.pdf

Mendonça, L., Badel, J., & Zambolim, L. (2017). Bacterial citrus diseases: Major threats and recent progress. Journal of Bacteriology & Mycology, 5(4), 340–350. https://doi.org/10.15406/jbmoa.2017.05.00143

Mira, A., Yu, S., & Matia, M. (2019). Evaluation of Huanglongbing tolerance in citrus breeding populations. Journal of Productivity and Development, 24(2), 371–390. Retrieved from https://www.semanticscholar.org/paper/EVALUATION-OF-HUANGLONGBING-TOLERANCE-IN-CITRUS-Mira-Yu/cd17d0d373e09fc4e0d806ed34de26754c479eb8

Nurhadi. (2015). Penyakit Huanglongbing tanaman jeruk (Candidatus Liberibacter asiaticus): Ancaman dan strategi pengendalian. Pengembangan Inovasi Pertanian, 8(1), 21–32. Retrieved from http://balitjestro.litbang.pertanian.go.id/penyakithuanglongbing-tanaman-jeruk-candidatusliberibacter-asiaticus-ancaman-dan-strategipengendalian/

Ramadugu, C., Keremane, M. L., Halbert, S. E., Duan, Y. P., Roose, M. L., Stover, E., & Lee, R. F. (2016). Long-term field evaluation reveals Huanglongbing resistance in citrus relatives. Plant Disease, 100(9), 1858–1869. https://doi.org/10.1094/PDIS-03-16-0271-RE

Rattanpal, H. S., Singh, G., & Gupta, M. (2019). Studies on mutation breeding in mandarin variety Kinnow. Current Science, 116(3), 483 – 487. https://doi.org/10.18520/cs/v116/i3/483-487

Rustiani, U. S., Endah, A. S., Nurjanah, Prasetiawan, A., & Nurmaida. (2015). Deteksi bakteri penyebab CVPD pada jeruk menggunakan DNA asal tulang daun. Jurnal Fitopatologi Indonesia, 11(3), 79. https://doi.org/10.14692/jfi.11.3.79

Setiawan, R. B., Khumaida, N., & Dinarti, D. (2015). Induksi mutasi kalus embriogenik gandum (Triticum aestivum L.) melalui iradiasi sinar gamma untuk toleransi suhu tinggi. Jurnal Agronomi Indonesia, 43(1), 36–44. https://doi.org/10.24831/jai.v43i1.9589

Tahir, M., Riniarti, D., Ersan, & Kusuma, J. (2019). Genetic and leaf characteristic diversity on 10 mutant progenies of patchouli (Pogostemon cablin) provide insights to selection strategies. AGRIVITA, Journal of Agricultural Science, 41(1), 139–148. https://doi.org/10.17503/agrivita.v41i1.1908

Wulandari, D. R., Purwito, A., Susanto, S., Husni, A., & Ermayanti, T. M. (2018). Protoplast fusion between Indonesian Citrus maxima (Burm.) Merr. and Citrus reticulata L.: A preliminary report. AGRIVITA, Journal of Agricultural Science, 40(2), 233–241. https://doi.org/10.17503/agrivita.v40i0.950

Wulansari, A. (2013). Induksi keragaman genetik melalui iradiasi sinar gamma pada kalus embriogenik hasil kultur protoplas jeruk siam. Bogor Agricultural University. Retrieved from https://repository.ipb.ac.id/handle/123456789/63744

Yani, R. H., Khumaida, N., Ardie, S. W., & Syukur, M. (2018). Analysis of variance, heritability, correlation and selection character of M1 V3 generation cassava (Manihot esculenta Crantz) mutants. AGRIVITA, Journal of Agricultural Science, 40(1), 74–79. https://doi.org/10.17503/agrivita.v40i1.844

Zanzibar, M., & Sudrajat, D. J. (2016). Effect of gamma irradiation on seed germination, storage, and seedling growth of Magnolia champaca L. Indonesian Journal of Forestry Research, 3(2), 95–106. https://doi.org/10.20886/ijfr.2016.3.2.95-106




DOI: http://doi.org/10.17503/agrivita.v43i2.2887

Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.