Efficiency of Using Macrolophus nubilus H.S. for Protecting Tomatoes from Major Pests in the Greenhouse Conditions of South Kazakhstan
Abstract
Since 2015, the greatest harm to greenhouse vegetables in Kazakhstan has been caused by a previously unknown pest of nightshades – the South American tomato moth (Tuta absoluta) and the greenhouse whitefly (Trialeurodes vaporariorum). To obtain an environmentally friendly product, for the first time in Kazakhstan, the biological features of the predatory bug Macrolophus nubilus were studied and a complex integrated system was developed using biological methods. The data obtained on the survival rate and duration of development of M. nubilus larvae indicate that the eggs of the Sitotroga cerealella, as well as the eggs and larvae of the T. vaporariorum and T. absoluta, serve as a complete food for the predatory bug. Production tests of M. nubilus to assess the effect of temperature and photoperiod on the duration of larval development were carried out in the greenhouse complex “Naimbekov” on an area of 1 hectare (early indeterminate tomato hybrid Attia F1). The assessment of the biological effectiveness of M. nubilus against T. vaporariorum and T. absoluta was carried out in the greenhouse complex “Adelya” on an area of 5 hectares (mediumfruited carpal tomato hybrid Merlis F1) in southern Kazakhstan. These results contribute to more sustainable tomato production.
Keywords
Full Text:
PDFReferences
Agustí, N., & Gabarra, R. (2009). Effect of adult age and insect density of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on progeny. Journal of Pest Science, 82(3), 241–246. DOI
Aitkulov, A. K., Khusnutdinova, R. A., Zhunusbay, R. T., Uzhimakhan, M. N., Moldybaeva, E. A., & Suleiman, M. A. (2017). Analiz vozmozhnosti akklimatizatsii yuzhnoamerikanskoy tomatnoy moli (Tuta absoluta) na territorii respubliki Kazakhstan [Analysis of the possibility of acclimatization of the South American tomato moth (Tuta absoluta) in the territory of the Republic of Kazakhstan]. Materialy Respublikanskoy nauchno-teoreticheskoy konferentsii “Seyfullinskiye chteniya – 13: sokhranyaya traditsii, sozdavaya budushcheye”, posvyashchennaya 60-letiyu Kazakhskogo agrotekhnicheskogo universiteta imeni S.Seyfullina [Materials of the Republican scientific-theoretical conference “Seifullin readings – 13: preserving traditions, creating the future”, dedicated to the 60th anniversary of the S. Seifullin Kazakh Agro Technical University], Vol. I, Part 1, 61-64. Retrieved from PDF
Arnó, J., & Gabarra, R. (2011). Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). Journal of Pest Science, 84(4), 513–520. DOI
Baños-Díaz, H. L., & de los Ángeles Martinez-Rivero, M. (2018). Development and prey preference of Macrolophus basicornis (Hemiptera: Miridae) feeding on Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae). Revista de Protección Vegetal, 33(1), 1-10. Retrieved from website
Castañé, C., Agustí, N., Arnó, J., Gabarra, R., Riudavets, J., Comas, J., & Alomar, Ó. (2013). Taxonomic identification of Macrolophus pygmaeus and Macrolophus melanotoma based on morphometry and molecular markers. Bulletin of Entomological Research, 103(2), 204–215. DOI
Castañé, C., Arnó, J., Gabarra, R., & Alomar, O. (2011). Plant damage to vegetable crops by zoophytophagous mirid predators. Biological Control, 59(1), 22–29. DOI
Chadinova, A. M. (2020). Yuzhnoamerikanskaya tomatnaya mol (Tuta absoluta Povolny) v posevakh tomatov Kazakhstana i mery zashchity ot neye [South American tomato moth (Tuta absoluta Povolny) in tomato crops in Kazakhstan and protection measures against it]. National Agrarian Science and Educational Centre. Retrieved from website
Chadinova, A. M., Alimbekova, A. K., Shanimov, K. I., & Duisembekov, B. A. (2019). Vredonosnost yuzhnoamerikanskoi tomatnoi moli Tuta absoluta (Rovolny) v posevakh tomatov Kazakhstana i mery zashchity ot nee [Harmfulness of the South American tomato moth Tuta absoluta (Povolny) in tomato crops in Kazakhstan and protection measures again. IV Vserossiiskii Sezd Po Zashchite Rastenii s Mezhdunarodnym Uchastiem “Fitosanitarnye Tekhnologii v Obespechenii Nezavisimosti i Konkurentosposobnosti APK Rossii”. Sbornik Tezisov Dokladov SPb.FGBNUVIZR [IV All-Russian Congress on Plant Protection With, 168–169. Retrieved from website
Chailleux, A., Bearez, P., Pizzol, J., Amiens-Desneux, E., Ramirez-Romero, R., & Desneux, N. (2013). Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. Journal of Pest Science, 86(3), 533–541. DOI
De Backer, L., Megido, R. C., Haubruge, É., & Verheggen, F. J. (2014). Macrolophus pygmaeus (Rambur) as an efficient predator of the tomato leafminer Tuta absoluta (Meyrick) in Europe. A review. Biotechnology, Agronomy and Society and Environment, 18, 536–543. Retrieved from PDF
Desneux, N., Wajnberg, E., Wyckhuys, K. A. G., Burgio, G., Arpaia, S., Narváez-Vasquez, C. A., ... Urbaneja, A. (2010). Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. Journal of Pest Science, 83(3), 197–215. DOI
Dommguez, A., Lopez, S., Bernabé, A., Guerrero, A., & Quero, C. (2019). Influence of age, host plant and mating status in pheromone production and new insights on perception plasticity in Tuta absoluta. Insects, 10(8), 256. DOI
ECO Culture. (2018). Osobennosti borby s tutoy absolyutoy na tomate [Features of the fight against Tuta absoluta on tomatoes]. Retrieved from website
EEC. (2019). Obzor razvitiya ovoshchevodstva i bakhchevodstva v gosudarstvakh – chlenakh Yevraziyskogo ekonomicheskogo soyuza za 2013-2017 gody [Overview of the development of vegetable and melon growing in the member states of the Eurasian Economic Union for 2013-2017]. Moscow: Eurasian Economic Commission. Retrieved from PDF
El-Dessouki, S. A., El-Kifl, A. H., & Helala, H. A. (1976). Life circle, host plant and symptoms of damage of the tomato bug, Nesidiocoris tenuis Reuter. (Hemiptera: Miridae) in Egypt. Journal of Plant Diseases and Protection, 83(4), 204–220. Retrieved from https://www.cabi.org/isc/abstract/19760537991 Gosudarstvennaya programma razvitiya agropromyshlennogo kompleksa Respubliki Kazakhstan na 2017-2021 gody ot 12.08.2018 goda No. 423 [State program No. 423 for the development of the agro-industrial complex of the Republic of Kazakhstan for 2017-2021 date. (n.d.). Retrieved from website
Han, P., Bayram, Y., Shaltiel-Harpaz, L., Sohrabi, F., Saji, A., Esenali, U. T., ... Desneux, N. (2018). Tuta absoluta continues to disperse in Asia: Damage, ongoing management and future challenges. Journal of Pest Science, 92, 1317–1327. DOI
Han, P., Bearez, P., Adamowicz, S., Lavoir, A.-V., Amiens-Desneux, E., & Desneux, N. (2015). Nitrogen and water limitations in tomato plants trigger negative bottom-up effects on the omnivorous predator Macrolophus pygmaeus. Journal of Pest Science, 88(4), 685–691. DOI
Ingegno, B. L., Pansa, M. G., & Tavella, L. (2011). Plant preference in the zoophytophagous generalist predator Macrolophus pygmaeus (Heteroptera: Miridae). Biological Control, 58(3), 174-181. DOI
Jäckel, B., Alt, S., & Balder, H. (2011). Untersuchungen zum Einfluss von Temperatur und Licht auf die Fraßleistung von Macrolophus pygmaeus (Rambur, 1839) (Heteroptera: Miridae) an verschiedenen Weiße Fliege-Arten. Gesunde Pflanzen, 62(3–4), 133–138. DOI
KazAgroFinance (2019). Investiruyem v budushcheye otrasli. Godovoy otchet “KazAgroFinans” [Invest in the future of the industry. Annual report “KazAgroFinance”]. Astana. Retrieved from PDF
Kenenbaev, C. B. (2017). O konkurentosposobnosti Kazakhstanskikh sortov selskokhozyaistvennykh kultur [On the competitiveness of Kazakhstani varieties of agricultural crops]. Izvestiya Agrarnoi Nauki Kazakhstana, 1(2), 11–21. Retrieved from website
Kopzhasarova, L. (2020). Greenhouse conditions. Why are imported vegetables cheaper in winter thanKazakhstani. Retrieved from website
Krasavina, L. P. (2011). Novaya tekhnologiya razvedeniyu i primeneniya khishchnogo klopa makrolofusa (Macrolophus nubilus) [New technology for breeding and application of the predatory Macrolophus bug (Macrolophus nubilus)]. Informatsionnyi byulleten VPPS MOBB. Informatsionnyi Byulleten VPPS MOBB, 42, 115–119. Retrieved from website
López, S. N., Rojas, F. A., Velásquez, V. V., & Cagnotti, C. (2012). Biology of Tupiocoris cucurbitaceus (Hemiptera: Miridae), a predator of the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) in tomato crops in Argentina. Biocontrol Science and Technology, 22(10), 1107-1117. DOI
Lykouressis, D., Perdikis, D., & Charalampous, P. (2014). Plant food effects on prey consumption by the omnivorous predator Macrolophus pygmaeus. Phytoparasitica, 42(3), 303–309. DOI
Maselou, D., Perdikis, D., & Fantinou, A. (2015). Effect of hunger level on prey consumption and functional response of the predator Macrolophus pygmaeus. Bulletin of Insectology, 68, 211–218. Retrieved from PDF
Michaelides, G., Sfenthourakis, S., Pitsillou, M., & Seraphides, N. (2018). Functional response and multiple predator effects of two generalist predators preying on Tuta absoluta eggs. Pest Management Science, 74(2), 332–339. DOI
Moreno-Ripoll, R., Gabarra, R., Symondson, W. O. C., King, R. A., & Agustí, N. (2014). Do the interactions among natural enemies compromise the biological control of the whitefly Bemisia tabaci? Journal of Pest Science, 87(1), 133–141. DOI
Nannini, M., Atzori, F., Murgia, G., Pisci, R., & Sanna, F. (2012). Use of predatory mirids for control of the tomato borer Tuta absoluta (Meyrick) in Sardinian greenhouse tomatoes. EPPO Bulletin, 42(2), 255–259. DOI
O Strategicheskom plane Ministerstva selskogo khozyaistva Respubliki Kazakhstan na 2014 - 2018 gody ot 10 marta 2015 goda No. 114 [On Strategic Plan No. 114 of the Ministry of Agriculture of the Republic of Kazakhstan for 2014-2018 dated March 10, 2015. (n.d.). Retrieved from website
Passos, L. C., Soares, M. A., Collares, L. J., Malagoli, I., Desneux, N., & Carvalho, G. A. (2018). Lethal, sublethal and transgenerational effects of insecticides on Macrolophus basicornis, predator of Tuta absoluta. Entomologia Generalis, 38(2), 127-143. DOI
Pazyuk, I. M., & Reznik, S. Y. (2016). Influence of photoperiod on development and maturation of Macrolophus pygmaeus (Hemiptera, Miridae). Entomological Review, 96(3), 274–279. DOI
Portillo, N., Alomar, O., & Wäckers, F. (2012). Nectarivory by the plant-tissue feeding predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae): Nutritional redundancy or nutritional benefit? Journal of Insect Physiology, 58(3), 397–401. DOI
Prishchepa, L. I., & Voitka, D. V. (2013). Biologicheskii kontrol tomatnoi miniruyushchei moli [Biological control of tomato mining moth]. Zashchita i Karantin Rastenii, 4, 39–41.
Put, K., Bollens, T., Wäckers, F. L., & Pekas, A. (2012). Type and spatial distribution of food supplements impact population development and dispersal of the omnivore predator Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae). Biological Control. DOI
Sagitov, A. O., Alimbekova, A. K., & Duisembekov, B. A. (2020). Ways of mass cultivation of macrolophus when protecting tomatoes in greenhouses from pests. Patent (19) KZ (13) U (11) 5363 (51) A01G13/00(2006.01).
Sanchez, J. A., López-Gallego, E., Pérez-Marcos, M., & Perera-Fernández, L. (2020). The effect of banker plants and pre-plant release on the establishment and pest control of Macrolophus pygmaeus in tomato greenhouses. Journal of Pest Science. DOI
Toleubaev, K. M., Shanimov, K. I., Kozhakhmetova, F. K., & Chadinova, A. M. (2012). Biologizatsiya zashchity ovoshchnykh kultur ot vreditelei [Biologization of the protection of vegetable crops from pests]. Zhurnal Issledovaniya, 3, 91–95. Retrieved from PDF
Tverdyukov, A. P., Nikonov, P. V., & Yushchenko, N. P.(1993). Coccinellids. Zaschchita Rastenii, 11, 42-43. Retrieved from PDF
Urbaneja-Bernat, P., Bru, P., González-Cabrera, J., Urbaneja, A., & Tena, A. (2019). Reduced phytophagy in sugar-provisioned mirids. Journal of Pest Science, 92(3), 1139–1148. DOI
DOI: http://doi.org/10.17503/agrivita.v43i3.2857
Copyright (c) 2021 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.